Abstract
A model of the carbohydrate recognition domain of the serum form of mannose-binding protein (MBP) from rat complexed with methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside is presented. Allowed conformations for the bound sugar were derived from simulated annealing protocols incorporating distance restraints computed from transferred NOESY spectra. The resulting sugar conformations were then modeled into the MBP binding site, and these models of the complex were refined using molecular dynamics (MD) simulations in the presence of solvent water. These studies indicate that only one of the two major conformations of the alpha(1-->6) linkage found in solution is significantly populated in the bound state (omega = 60 degrees ), whereas the alpha(1-->3) linkage samples at least two states, similar to its behavior in free solution. The bound conformation allows direct hydrogen bonds to form between the sugar and K182 of MBP, in addition to other water-mediated hydrogen bonds. Estimates of binding constants of candidate complexes based on changes in solvent-accessible surface areas upon binding support the NMR and MD results. These estimates further suggest that the enthalpic gains of the additional sugar-MBP interactions in a trisaccharide as opposed to a monosaccharide are offset by entropic penalties, offering an explanation for previous binding data.
Full Text
The Full Text of this article is available as a PDF (469.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Hashimi H. M., Bolon P. J., Prestegard J. H. Molecular symmetry as an aid to geometry determination in ligand protein complexes. J Magn Reson. 2000 Jan;142(1):153–158. doi: 10.1006/jmre.1999.1937. [DOI] [PubMed] [Google Scholar]
- Bolon P. J., Al-Hashimi H. M., Prestegard J. H. Residual dipolar coupling derived orientational constraints on ligand geometry in a 53 kDa protein-ligand complex. J Mol Biol. 1999 Oct 15;293(1):107–115. doi: 10.1006/jmbi.1999.3133. [DOI] [PubMed] [Google Scholar]
- Brisson J. R., Carver J. P. Solution conformation of alpha D(1-3)- and alpha D(1-6)-linked oligomannosides using proton nuclear magnetic resonance. Biochemistry. 1983 Mar 15;22(6):1362–1368. doi: 10.1021/bi00275a007. [DOI] [PubMed] [Google Scholar]
- Childs R. A., Feizi T., Yuen C. T., Drickamer K., Quesenberry M. S. Differential recognition of core and terminal portions of oligosaccharide ligands by carbohydrate-recognition domains of two mannose-binding proteins. J Biol Chem. 1990 Dec 5;265(34):20770–20777. [PubMed] [Google Scholar]
- Davies E. J., Teh L. S., Ordi-Ros J., Snowden N., Hillarby M. C., Hajeer A., Donn R., Perez-Pemen P., Vilardell-Tarres M., Ollier W. E. A dysfunctional allele of the mannose binding protein gene associates with systemic lupus erythematosus in a Spanish population. J Rheumatol. 1997 Mar;24(3):485–488. [PubMed] [Google Scholar]
- Doig A. J., Sternberg M. J. Side-chain conformational entropy in protein folding. Protein Sci. 1995 Nov;4(11):2247–2251. doi: 10.1002/pro.5560041101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drickamer K. Demonstration of carbohydrate-recognition activity in diverse proteins which share a common primary structure motif. Biochem Soc Trans. 1989 Feb;17(1):13–15. doi: 10.1042/bst0170013. [DOI] [PubMed] [Google Scholar]
- Drickamer K., Dordal M. S., Reynolds L. Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. J Biol Chem. 1986 May 25;261(15):6878–6887. [PubMed] [Google Scholar]
- Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem. 1988 Jul 15;263(20):9557–9560. [PubMed] [Google Scholar]
- Dunitz J. D. The entropic cost of bound water in crystals and biomolecules. Science. 1994 Apr 29;264(5159):670–670. doi: 10.1126/science.264.5159.670. [DOI] [PubMed] [Google Scholar]
- Ezekowitz R. A. Genetic heterogeneity of mannose-binding proteins: the Jekyll and Hyde of innate immunity? Am J Hum Genet. 1998 Jan;62(1):6–9. doi: 10.1086/301696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gadjeva M., Thiel S., Jensenius J. C. The mannan-binding-lectin pathway of the innate immune response. Curr Opin Immunol. 2001 Feb;13(1):74–78. doi: 10.1016/s0952-7915(00)00185-0. [DOI] [PubMed] [Google Scholar]
- García-Hernández E., Hernández-Arana A. Structural bases of lectin-carbohydrate affinities: comparison with protein-folding energetics. Protein Sci. 1999 May;8(5):1075–1086. doi: 10.1110/ps.8.5.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garred P., Madsen H. O., Balslev U., Hofmann B., Pedersen C., Gerstoft J., Svejgaard A. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet. 1997 Jan 25;349(9047):236–240. doi: 10.1016/S0140-6736(96)08440-1. [DOI] [PubMed] [Google Scholar]
- Garred P., Madsen H. O., Hofmann B., Svejgaard A. Increased frequency of homozygosity of abnormal mannan-binding-protein alleles in patients with suspected immunodeficiency. Lancet. 1995 Oct 7;346(8980):941–943. doi: 10.1016/s0140-6736(95)91559-1. [DOI] [PubMed] [Google Scholar]
- Hoppe H. J., Reid K. B. Collectins--soluble proteins containing collagenous regions and lectin domains--and their roles in innate immunity. Protein Sci. 1994 Aug;3(8):1143–1158. doi: 10.1002/pro.5560030801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoppe H. J., Reid K. B. Trimeric C-type lectin domains in host defence. Structure. 1994 Dec 15;2(12):1129–1133. doi: 10.1016/S0969-2126(94)00115-4. [DOI] [PubMed] [Google Scholar]
- Håkansson K., Reid K. B. Collectin structure: a review. Protein Sci. 2000 Sep;9(9):1607–1617. doi: 10.1110/ps.9.9.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Symbols for specifying the conformation of polysaccharide chains. Recommendations 1981. Eur J Biochem. 1983 Mar 1;131(1):5–7. doi: 10.1111/j.1432-1033.1983.tb07224.x. [DOI] [PubMed] [Google Scholar]
- Ikeda K., Sannoh T., Kawasaki N., Kawasaki T., Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987 Jun 5;262(16):7451–7454. [PubMed] [Google Scholar]
- Iobst S. T., Drickamer K. Selective sugar binding to the carbohydrate recognition domains of the rat hepatic and macrophage asialoglycoprotein receptors. J Biol Chem. 1996 Mar 22;271(12):6686–6693. doi: 10.1074/jbc.271.12.6686. [DOI] [PubMed] [Google Scholar]
- Iobst S. T., Wormald M. R., Weis W. I., Dwek R. A., Drickamer K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J Biol Chem. 1994 Jun 3;269(22):15505–15511. [PubMed] [Google Scholar]
- Kilpatrick D. C. Mannan binding protein in sera positive for rheumatoid factor. Br J Rheumatol. 1997 Feb;36(2):207–209. doi: 10.1093/rheumatology/36.2.207. [DOI] [PubMed] [Google Scholar]
- Lee R. T., Lee Y. C. Difference in binding-site architecture of the serum-type and liver-type mannose-binding proteins. Glycoconj J. 1997 Apr;14(3):357–363. doi: 10.1023/a:1018574729088. [DOI] [PubMed] [Google Scholar]
- Lee R. T., Shinohara Y., Hasegawa Y., Lee Y. C. Lectin-carbohydrate interactions: fine specificity difference between two mannose-binding proteins. Biosci Rep. 1999 Aug;19(4):283–292. doi: 10.1023/a:1020546307825. [DOI] [PubMed] [Google Scholar]
- Loris R., Maes D., Poortmans F., Wyns L., Bouckaert J. A structure of the complex between concanavalin A and methyl-3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside reveals two binding modes. J Biol Chem. 1996 Nov 29;271(48):30614–30618. doi: 10.1074/jbc.271.48.30614. [DOI] [PubMed] [Google Scholar]
- Lu J. Collectins: collectors of microorganisms for the innate immune system. Bioessays. 1997 Jun;19(6):509–518. doi: 10.1002/bies.950190610. [DOI] [PubMed] [Google Scholar]
- Naismith J. H., Field R. A. Structural basis of trimannoside recognition by concanavalin A. J Biol Chem. 1996 Jan 12;271(2):972–976. doi: 10.1074/jbc.271.2.972. [DOI] [PubMed] [Google Scholar]
- Ng K. K., Drickamer K., Weis W. I. Structural analysis of monosaccharide recognition by rat liver mannose-binding protein. J Biol Chem. 1996 Jan 12;271(2):663–674. doi: 10.1074/jbc.271.2.663. [DOI] [PubMed] [Google Scholar]
- Petrescu A. J., Petrescu S. M., Dwek R. A., Wormald M. R. A statistical analysis of N- and O-glycan linkage conformations from crystallographic data. Glycobiology. 1999 Apr;9(4):343–352. doi: 10.1093/glycob/9.4.343. [DOI] [PubMed] [Google Scholar]
- Quesenberry M. S., Lee R. T., Lee Y. C. Difference in the binding mode of two mannose-binding proteins: demonstration of a selective minicluster effect. Biochemistry. 1997 Mar 4;36(9):2724–2732. doi: 10.1021/bi9622635. [DOI] [PubMed] [Google Scholar]
- Rozwarski D. A., Swami B. M., Brewer C. F., Sacchettini J. C. Crystal structure of the lectin from Dioclea grandiflora complexed with core trimannoside of asparagine-linked carbohydrates. J Biol Chem. 1998 Dec 4;273(49):32818–32825. doi: 10.1074/jbc.273.49.32818. [DOI] [PubMed] [Google Scholar]
- Sayers E. W., Prestegard J. H. Solution conformations of a trimannoside from nuclear magnetic resonance and molecular dynamics simulations. Biophys J. 2000 Dec;79(6):3313–3329. doi: 10.1016/S0006-3495(00)76563-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sayers E. W., Weaver J. L., Prestegard J. H. Hydrogen bonding geometry of a protein-bound carbohydrate from water exchange-mediated cross-relaxation. J Biomol NMR. 1998 Aug;12(2):209–222. doi: 10.1023/a:1008220522409. [DOI] [PubMed] [Google Scholar]
- Summerfield J. A., Sumiya M., Levin M., Turner M. W. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. BMJ. 1997 Apr 26;314(7089):1229–1232. doi: 10.1136/bmj.314.7089.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summerfield J. A. The role of mannose-binding protein in host defence. Biochem Soc Trans. 1993 May;21(2):473–477. doi: 10.1042/bst0210473. [DOI] [PubMed] [Google Scholar]
- Super M., Thiel S., Lu J., Levinsky R. J., Turner M. W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet. 1989 Nov 25;2(8674):1236–1239. doi: 10.1016/s0140-6736(89)91849-7. [DOI] [PubMed] [Google Scholar]
- Thomas H. C., Foster G. R., Sumiya M., McIntosh D., Jack D. L., Turner M. W., Summerfield J. A. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. Lancet. 1996 Nov 23;348(9039):1417–1419. doi: 10.1016/s0140-6736(96)05409-8. [DOI] [PubMed] [Google Scholar]
- Turner M. W. Mannose-binding lectin (MBL) in health and disease. Immunobiology. 1998 Aug;199(2):327–339. doi: 10.1016/S0171-2985(98)80037-5. [DOI] [PubMed] [Google Scholar]
- Turner M. W. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today. 1996 Nov;17(11):532–540. doi: 10.1016/0167-5699(96)10062-1. [DOI] [PubMed] [Google Scholar]
- Weis W. I., Crichlow G. V., Murthy H. M., Hendrickson W. A., Drickamer K. Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat. J Biol Chem. 1991 Nov 5;266(31):20678–20686. [PubMed] [Google Scholar]
- Weis W. I., Drickamer K., Hendrickson W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992 Nov 12;360(6400):127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]
- Weis W. I., Kahn R., Fourme R., Drickamer K., Hendrickson W. A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science. 1991 Dec 13;254(5038):1608–1615. doi: 10.1126/science.1721241. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
- Wright C. S., Hester G. The 2.0 A structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes. Structure. 1996 Nov 15;4(11):1339–1352. doi: 10.1016/s0969-2126(96)00141-4. [DOI] [PubMed] [Google Scholar]
