Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2709–2719. doi: 10.1016/S0006-3495(02)75612-9

Conformational changes and orientation of Humicola lanuginosa lipase on a solid hydrophobic surface: an in situ interface Fourier transform infrared-attenuated total reflection study.

Sylvie Noinville 1, Madeleine Revault 1, Marie-Hélène Baron 1, Ali Tiss 1, Stéphane Yapoudjian 1, Margarita Ivanova 1, Robert Verger 1
PMCID: PMC1302059  PMID: 11964257

Abstract

This study was done to better understand how lipases are activated at an interface. We investigated the conformational and solvation changes occurring during the adsorption of Humicola lanuginosa lipase (HLL) onto a hydrophobic surface using Fourier transform infrared-attenuated total reflection spectroscopy. The hydrophobic surfaces were obtained by coating silicon attenuated total reflection crystal with octadecyltrichlorosilane. Analysis of vibrational spectra was used to compare the conformation of HLL adsorbed at the aqueous-solid interface with its conformation in solution. X-ray crystallography has shown that HLL exists in two conformations, the closed and open forms. The conformational changes in HLL caused by adsorption onto the surface were compared with those occurring in three reference proteins, bovine serum albumin, lysozyme, and alpha-chymotrypsin. Adsorbed protein layers were prepared using proteins solutions of 0.005 to 0.5 mg/mL. The adsorptions of bovine serum albumin, lysozyme, and alpha-chymotrypsin to the hydrophobic support were accompanied by large unfoldings of ordered structures. In contrast, HLL underwent no secondary structure changes at first stage of adsorption, but there was a slight folding of beta-structures as the lipase monolayer became complete. Solvation studies using deuterated buffer showed an unusual hydrogen/deuterium exchange of the peptide CONH groups of the adsorbed HLL molecules. This exchange is consistent with the lipase being in the native open conformation at the water/hydrophobic interface.

Full Text

The Full Text of this article is available as a PDF (281.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron MH, Revault M, Servagent-Noinville S, Abadie J, Quiquampoix H. Chymotrypsin Adsorption on Montmorillonite: Enzymatic Activity and Kinetic FTIR Structural Analysis. J Colloid Interface Sci. 1999 Jun 15;214(2):319–332. doi: 10.1006/jcis.1999.6189. [DOI] [PubMed] [Google Scholar]
  2. Bentley G. A., Delepierre M., Dobson C. M., Wedin R. E., Mason S. A., Poulsen F. M. Exchange of individual hydrogens for a protein in a crystal and in solution. J Mol Biol. 1983 Oct 15;170(1):243–247. doi: 10.1016/s0022-2836(83)80235-6. [DOI] [PubMed] [Google Scholar]
  3. Birktoft J. J., Blow D. M. Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. J Mol Biol. 1972 Jul 21;68(2):187–240. doi: 10.1016/0022-2836(72)90210-0. [DOI] [PubMed] [Google Scholar]
  4. Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 1990 Feb 22;343(6260):767–770. doi: 10.1038/343767a0. [DOI] [PubMed] [Google Scholar]
  5. Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., Bjorkling F., Huge-Jensen B., Patkar S. A., Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991 Jun 6;351(6326):491–494. doi: 10.1038/351491a0. [DOI] [PubMed] [Google Scholar]
  6. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  7. Carter D. C., Ho J. X. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203. doi: 10.1016/s0065-3233(08)60640-3. [DOI] [PubMed] [Google Scholar]
  8. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  9. Chittur K. K. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials. 1998 Mar;19(4-5):357–369. doi: 10.1016/s0142-9612(97)00223-8. [DOI] [PubMed] [Google Scholar]
  10. DESNUELLE P., SARDA L., AILHAUD G. [Inhibition of pancreatic lipase by diethyl-p-nitrophenyl phosphate in emulation]. Biochim Biophys Acta. 1960 Jan 29;37:570–571. doi: 10.1016/0006-3002(60)90532-1. [DOI] [PubMed] [Google Scholar]
  11. Derewenda U., Brzozowski A. M., Lawson D. M., Derewenda Z. S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry. 1992 Feb 11;31(5):1532–1541. doi: 10.1021/bi00120a034. [DOI] [PubMed] [Google Scholar]
  12. Derewenda U., Swenson L., Green R., Wei Y., Dodson G. G., Yamaguchi S., Haas M. J., Derewenda Z. S. An unusual buried polar cluster in a family of fungal lipases. Nat Struct Biol. 1994 Jan;1(1):36–47. doi: 10.1038/nsb0194-36. [DOI] [PubMed] [Google Scholar]
  13. Derewenda U., Swenson L., Green R., Wei Y., Yamaguchi S., Joerger R., Haas M. J., Derewenda Z. S. Current progress in crystallographic studies of new lipases from filamentous fungi. Protein Eng. 1994 Apr;7(4):551–557. doi: 10.1093/protein/7.4.551. [DOI] [PubMed] [Google Scholar]
  14. Derewenda U., Swenson L., Wei Y., Green R., Kobos P. M., Joerger R., Haas M. J., Derewenda Z. S. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J Lipid Res. 1994 Mar;35(3):524–534. [PubMed] [Google Scholar]
  15. Derewenda Z. S., Derewenda U., Dodson G. G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. J Mol Biol. 1992 Oct 5;227(3):818–839. doi: 10.1016/0022-2836(92)90225-9. [DOI] [PubMed] [Google Scholar]
  16. Ferrato F., Carriere F., Sarda L., Verger R. A critical reevaluation of the phenomenon of interfacial activation. Methods Enzymol. 1997;286:327–347. doi: 10.1016/s0076-6879(97)86018-1. [DOI] [PubMed] [Google Scholar]
  17. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds. Subcell Biochem. 1994;23:329–362. doi: 10.1007/978-1-4615-1863-1_8. [DOI] [PubMed] [Google Scholar]
  18. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem. 1990 Oct 24;193(2):409–420. doi: 10.1111/j.1432-1033.1990.tb19354.x. [DOI] [PubMed] [Google Scholar]
  19. Gregory R. B., Lumry R. Hydrogen-exchange evidence for distinct structural classes in globular proteins. Biopolymers. 1985 Feb;24(2):301–326. doi: 10.1002/bip.360240203. [DOI] [PubMed] [Google Scholar]
  20. Grochulski P., Li Y., Schrag J. D., Bouthillier F., Smith P., Harrison D., Rubin B., Cygler M. Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem. 1993 Jun 15;268(17):12843–12847. [PubMed] [Google Scholar]
  21. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
  22. Lawson D. M., Brzozowski A. M., Rety S., Verma C., Dodson G. G. Probing the nature of substrate binding in Humicola lanuginosa lipase through X-ray crystallography and intuitive modelling. Protein Eng. 1994 Apr;7(4):543–550. doi: 10.1093/protein/7.4.543. [DOI] [PubMed] [Google Scholar]
  23. Malmsten M. Formation of Adsorbed Protein Layers. J Colloid Interface Sci. 1998 Nov 15;207(2):186–199. doi: 10.1006/jcis.1998.5763. [DOI] [PubMed] [Google Scholar]
  24. Martinelle M., Holmquist M., Hult K. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta. 1995 Oct 5;1258(3):272–276. doi: 10.1016/0005-2760(95)00131-u. [DOI] [PubMed] [Google Scholar]
  25. Momsen W. E., Brockman H. L. Recovery of monomolecular films in studies of lipolysis. Methods Enzymol. 1997;286:292–305. doi: 10.1016/s0076-6879(97)86016-8. [DOI] [PubMed] [Google Scholar]
  26. Oberg K. A., Fink A. L. A new attenuated total reflectance Fourier transform infrared spectroscopy method for the study of proteins in solution. Anal Biochem. 1998 Feb 1;256(1):92–106. doi: 10.1006/abio.1997.2486. [DOI] [PubMed] [Google Scholar]
  27. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  28. Pantazaki A, Baron MH, Revault M, Vidal-Madjar C. Characterization of Human Serum Albumin Adsorbed on a Porous Anion-Exchange Support. J Colloid Interface Sci. 1998 Nov 15;207(2):324–331. doi: 10.1006/jcis.1998.5782. [DOI] [PubMed] [Google Scholar]
  29. Patton J. S., Carey M. C. Watching fat digestion. Science. 1979 Apr 13;204(4389):145–148. doi: 10.1126/science.432636. [DOI] [PubMed] [Google Scholar]
  30. Peters G. H., Svendsen A., Langberg H., Vind J., Patkar S. A., Toxvaerd S., Kinnunen P. K. Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. Biochemistry. 1998 Sep 8;37(36):12375–12383. doi: 10.1021/bi972883l. [DOI] [PubMed] [Google Scholar]
  31. Prestrelski S. J., Byler D. M., Thompson M. P. Infrared spectroscopic discrimination between alpha- and 3(10)-helices in globular proteins. Reexamination of Amide I infrared bands of alpha-lactalbumin and their assignment to secondary structures. Int J Pept Protein Res. 1991 Jun;37(6):508–512. [PubMed] [Google Scholar]
  32. Roussel A., Canaan S., Egloff M. P., Rivière M., Dupuis L., Verger R., Cambillau C. Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest. J Biol Chem. 1999 Jun 11;274(24):16995–17002. doi: 10.1074/jbc.274.24.16995. [DOI] [PubMed] [Google Scholar]
  33. SARDA L., DESNUELLE P. Action de la lipase pancréatique sur les esters en émulsion. Biochim Biophys Acta. 1958 Dec;30(3):513–521. doi: 10.1016/0006-3002(58)90097-0. [DOI] [PubMed] [Google Scholar]
  34. Servagent-Noinville S, Revault M, Quiquampoix H, Baron M. Conformational Changes of Bovine Serum Albumin Induced by Adsorption on Different Clay Surfaces: FTIR Analysis. J Colloid Interface Sci. 2000 Jan 15;221(2):273–283. doi: 10.1006/jcis.1999.6576. [DOI] [PubMed] [Google Scholar]
  35. Surewicz W. K., Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 1988 Jan 29;952(2):115–130. doi: 10.1016/0167-4838(88)90107-0. [DOI] [PubMed] [Google Scholar]
  36. Swedberg S. A., Pesek J. J., Fink A. L. Attenuated total reflectance Fourier transform infrared analysis of an acyl-enzyme intermediate of alpha-chymotrypsin. Anal Biochem. 1990 Apr;186(1):153–158. doi: 10.1016/0003-2697(90)90589-2. [DOI] [PubMed] [Google Scholar]
  37. Wantyghem J., Baron M. H., Picquart M., Lavialle F. Conformational changes of Robinia pseudoacacia lectin related to modifications of the environment: FTIR investigation. Biochemistry. 1990 Jul 17;29(28):6600–6609. doi: 10.1021/bi00480a008. [DOI] [PubMed] [Google Scholar]
  38. Wieloch T., Borgström B., Piéroni G., Pattus F., Verger R. Product activation of pancreatic lipase. Lipolytic enzymes as probes for lipid/water interfaces. J Biol Chem. 1982 Oct 10;257(19):11523–11528. [PubMed] [Google Scholar]
  39. Winkler F. K., D'Arcy A., Hunziker W. Structure of human pancreatic lipase. Nature. 1990 Feb 22;343(6260):771–774. doi: 10.1038/343771a0. [DOI] [PubMed] [Google Scholar]
  40. Zoungrana T, Findenegg GH, Norde W. Structure, Stability, and Activity of Adsorbed Enzymes. J Colloid Interface Sci. 1997 Jun 15;190(2):437–448. doi: 10.1006/jcis.1997.4895. [DOI] [PubMed] [Google Scholar]
  41. de Jongh H. H., Goormaghtigh E., Ruysschaert J. M. The different molar absorptivities of the secondary structure types in the amide I region: an attenuated total reflection infrared study on globular proteins. Anal Biochem. 1996 Nov 1;242(1):95–103. doi: 10.1006/abio.1996.0434. [DOI] [PubMed] [Google Scholar]
  42. van Tilbeurgh H., Egloff M. P., Martinez C., Rugani N., Verger R., Cambillau C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature. 1993 Apr 29;362(6423):814–820. doi: 10.1038/362814a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES