Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 May;82(5):2737–2745. doi: 10.1016/S0006-3495(02)75614-2

GTP-induced membrane binding and ion channel activity of annexin VI: is annexin VI a GTP biosensor?

Aneta Kirilenko 1, Marcin Golczak 1, Slawomir Pikula 1, Rene Buchet 1, Joanna Bandorowicz-Pikula 1
PMCID: PMC1302061  PMID: 11964259

Abstract

Annexin VI (AnxVI) formed ion channels in planar lipid bilayers that were induced by the addition of millimolar guanosine 5'-triphosphate (GTP) at pH 7.4 and that were not accompanied by a penetration of the protein into the membrane hydrophobic region. GTP-influenced interactions of AnxVI with Ca2+/liposomes produced small structural alterations as revealed by circular dichroism and infrared spectroscopies. Guanosine 5'-3-O-(thio)-triphosphate (GTPgammaS) binding to AnxVI, promoted by the photorelease of GTPgammaS from GTPgammaS[1-(4,5-dimethoxy-2-nitrophenyl)-ethyl] (caged-GTPgammaS), affected three to four amino acid residues of AnxVI in the presence of Ca2+/liposomes, while about eight or nine amino acid residues were altered in their absence. This suggested that the nucleotide-binding site overlapped the lipid-binding domain of AnxVI. The binding of the fluorescent GTP analog, 2'-(or 3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP) to AnxVI was optimal in the presence of Ca2+/liposomes, with a dissociation constant (K(d)) of 1 microM and stoichiometry of 1. TNP-GTP promoted fluorescence resonance energy transfer from tryptophan residues to the nucleotide. Ion conductance and fluorescence measurements of the C- and N-terminal fragments of AnxVI indicated distinct GTP-binding properties, suggesting that the existence of the GTP-induced ion channel activity of AnxVI is associated with the flexibility of the two halves of the protein. Such structural flexibility could contribute to a molecular mechanism of AnxVI acting as a GTP biosensor.

Full Text

The Full Text of this article is available as a PDF (132.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allin C., Gerwert K. Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy. Biochemistry. 2001 Mar 13;40(10):3037–3046. doi: 10.1021/bi0017024. [DOI] [PubMed] [Google Scholar]
  2. Arispe N., Pollard H. B., Rojas E. Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1710–1715. doi: 10.1073/pnas.93.4.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arispe N., Rojas E., Genge B. R., Wu L. N., Wuthier R. E. Similarity in calcium channel activity of annexin V and matrix vesicles in planar lipid bilayers. Biophys J. 1996 Oct;71(4):1764–1775. doi: 10.1016/S0006-3495(96)79377-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Avila-Sakar A. J., Creutz C. E., Kretsinger R. H. Crystal structure of bovine annexin VI in a calcium-bound state. Biochim Biophys Acta. 1998 Sep 8;1387(1-2):103–116. doi: 10.1016/s0167-4838(98)00111-3. [DOI] [PubMed] [Google Scholar]
  5. Avila-Sakar A. J., Kretsinger R. H., Creutz C. E. Membrane-bound 3D structures reveal the intrinsic flexibility of annexin VI. J Struct Biol. 2000 May;130(1):54–62. doi: 10.1006/jsbi.2000.4246. [DOI] [PubMed] [Google Scholar]
  6. Ayala-Sanmartin J. Cholesterol enhances phospholipid binding and aggregation of annexins by their core domain. Biochem Biophys Res Commun. 2001 Apr 27;283(1):72–79. doi: 10.1006/bbrc.2001.4748. [DOI] [PubMed] [Google Scholar]
  7. Babiychuk E. B., Draeger A. Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J Cell Biol. 2000 Sep 4;150(5):1113–1124. doi: 10.1083/jcb.150.5.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bandorowicz-Pikula J., Buchet R., Pikula S. Annexins as nucleotide-binding proteins: facts and speculations. Bioessays. 2001 Feb;23(2):170–178. doi: 10.1002/1521-1878(200102)23:2<170::AID-BIES1024>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  9. Bandorowicz-Pikuła J., Awasthi Y. C. Interaction of annexins IV and VI with ATP. An alternative mechanism by which a cellular function of these calcium- and membrane-binding proteins is regulated. FEBS Lett. 1997 Jun 9;409(2):300–306. doi: 10.1016/s0014-5793(97)00534-6. [DOI] [PubMed] [Google Scholar]
  10. Bandorowicz-Pikuła J., Pikuła S. Modulation of annexin VI--driven aggregation of phosphatidylserine liposomes by ATP. Biochimie. 1998 Jul;80(7):613–620. doi: 10.1016/s0300-9084(98)80014-x. [DOI] [PubMed] [Google Scholar]
  11. Bandorowicz-Pikuła J., Wrzosek A., Danieluk M., Pikula S., Buchet R. ATP-Binding site of annexin VI characterized by photochemical release of nucleotide and infrared difference spectroscopy. Biochem Biophys Res Commun. 1999 Oct 5;263(3):775–779. doi: 10.1006/bbrc.1999.1449. [DOI] [PubMed] [Google Scholar]
  12. Benz J., Bergner A., Hofmann A., Demange P., Göttig P., Liemann S., Huber R., Voges D. The structure of recombinant human annexin VI in crystals and membrane-bound. J Mol Biol. 1996 Aug 2;260(5):638–643. doi: 10.1006/jmbi.1996.0426. [DOI] [PubMed] [Google Scholar]
  13. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  14. Burger A., Berendes R., Voges D., Huber R., Demange P. A rapid and efficient purification method for recombinant annexin V for biophysical studies. FEBS Lett. 1993 Aug 23;329(1-2):25–28. doi: 10.1016/0014-5793(93)80185-w. [DOI] [PubMed] [Google Scholar]
  15. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  16. Calvo M., Pol A., Lu A., Ortega D., Pons M., Blasi J., Enrich C. Cellubrevin is present in the basolateral endocytic compartment of hepatocytes and follows the transcytotic pathway after IgA internalization. J Biol Chem. 2000 Mar 17;275(11):7910–7917. doi: 10.1074/jbc.275.11.7910. [DOI] [PubMed] [Google Scholar]
  17. Caohuy H., Srivastava M., Pollard H. B. Membrane fusion protein synexin (annexin VII) as a Ca2+/GTP sensor in exocytotic secretion. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10797–10802. doi: 10.1073/pnas.93.20.10797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cartailler J. P., Haigler H. T., Luecke H. Annexin XII E105K crystal structure: identification of a pH-dependent switch for mutant hexamerization. Biochemistry. 2000 Mar 14;39(10):2475–2483. doi: 10.1021/bi992278d. [DOI] [PubMed] [Google Scholar]
  19. Cepus V., Ulbrich C., Allin C., Troullier A., Gerwert K. Fourier transform infrared photolysis studies of caged compounds. Methods Enzymol. 1998;291:223–245. doi: 10.1016/s0076-6879(98)91015-1. [DOI] [PubMed] [Google Scholar]
  20. Chow A., Davis A. J., Gawler D. J. Identification of a novel protein complex containing annexin VI, Fyn, Pyk2, and the p120(GAP) C2 domain. FEBS Lett. 2000 Mar 3;469(1):88–92. doi: 10.1016/s0014-5793(00)01252-7. [DOI] [PubMed] [Google Scholar]
  21. Cohen B. E., Lee G., Arispe N., Pollard H. B. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity. FEBS Lett. 1995 Dec 27;377(3):444–450. doi: 10.1016/0014-5793(95)01395-4. [DOI] [PubMed] [Google Scholar]
  22. Golczak M., Kicinska A., Bandorowicz-Pikula J., Buchet R., Szewczyk A., Pikula S. Acidic pH-induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB J. 2001 Apr;15(6):1083–1085. doi: 10.1096/fj.00-0523fje. [DOI] [PubMed] [Google Scholar]
  23. Gonzalo P., Sontag B., Lavergne J. P., Jault J. M., Reboud J. P. Evidence for a second nucleotide binding site in rat elongation factor eEF-2 specific for adenylic nucleotides. Biochemistry. 2000 Nov 7;39(44):13558–13564. doi: 10.1021/bi000896k. [DOI] [PubMed] [Google Scholar]
  24. Grewal T., Heeren J., Mewawala D., Schnitgerhans T., Wendt D., Salomon G., Enrich C., Beisiegel U., Jäckle S. Annexin VI stimulates endocytosis and is involved in the trafficking of low density lipoprotein to the prelysosomal compartment. J Biol Chem. 2000 Oct 27;275(43):33806–33813. doi: 10.1074/jbc.M002662200. [DOI] [PubMed] [Google Scholar]
  25. Han Y., Malak H., Chaudhary A. G., Chordia M. D., Kingston D. G., Bane S. Distances between the paclitaxel, colchicine, and exchangeable GTP binding sites on tubulin. Biochemistry. 1998 May 12;37(19):6636–6644. doi: 10.1021/bi9719760. [DOI] [PubMed] [Google Scholar]
  26. Hofmann A., Benz J., Liemann S., Huber R. Voltage dependent binding of annexin V, annexin VI and annexin VII-core to acidic phospholipid membranes. Biochim Biophys Acta. 1997 Dec 4;1330(2):254–264. doi: 10.1016/s0005-2736(97)00150-8. [DOI] [PubMed] [Google Scholar]
  27. Huang S. G., Weisshart K., Fanning E. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues. Biochemistry. 1998 Nov 3;37(44):15336–15344. doi: 10.1021/bi981094g. [DOI] [PubMed] [Google Scholar]
  28. Isas J. M., Cartailler J. P., Sokolov Y., Patel D. R., Langen R., Luecke H., Hall J. E., Haigler H. T. Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry. 2000 Mar 21;39(11):3015–3022. doi: 10.1021/bi9922401. [DOI] [PubMed] [Google Scholar]
  29. Kawahara M., Kuroda Y., Arispe N., Rojas E. Alzheimer's beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J Biol Chem. 2000 May 12;275(19):14077–14083. doi: 10.1074/jbc.275.19.14077. [DOI] [PubMed] [Google Scholar]
  30. Kirsch T., Harrison G., Golub E. E., Nah H. D. The roles of annexins and types II and X collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J Biol Chem. 2000 Nov 10;275(45):35577–35583. doi: 10.1074/jbc.M005648200. [DOI] [PubMed] [Google Scholar]
  31. Kourie J. I., Henry C. L. Protein aggregation and deposition: implications for ion channel formation and membrane damage. Croat Med J. 2001 Aug;42(4):359–374. [PubMed] [Google Scholar]
  32. Kourie J. I. Mechanisms of prion-induced modifications in membrane transport properties: implications for signal transduction and neurotoxicity. Chem Biol Interact. 2001 Oct 25;138(1):1–26. doi: 10.1016/s0009-2797(01)00228-9. [DOI] [PubMed] [Google Scholar]
  33. Kourie J. I., Wood H. B. Biophysical and molecular properties of annexin-formed channels. Prog Biophys Mol Biol. 2000;73(2-4):91–134. doi: 10.1016/s0079-6107(00)00003-1. [DOI] [PubMed] [Google Scholar]
  34. Köhler G., Hering U., Zschörnig O., Arnold K. Annexin V interaction with phosphatidylserine-containing vesicles at low and neutral pH. Biochemistry. 1997 Jul 1;36(26):8189–8194. doi: 10.1021/bi9703960. [DOI] [PubMed] [Google Scholar]
  35. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  36. Michaely P., Kamal A., Anderson R. G., Bennett V. A requirement for ankyrin binding to clathrin during coated pit budding. J Biol Chem. 1999 Dec 10;274(50):35908–35913. doi: 10.1074/jbc.274.50.35908. [DOI] [PubMed] [Google Scholar]
  37. Ortega D., Pol A., Biermer M., Jäckle S., Enrich C. Annexin VI defines an apical endocytic compartment in rat liver hepatocytes. J Cell Sci. 1998 Jan;111(Pt 2):261–269. doi: 10.1242/jcs.111.2.261. [DOI] [PubMed] [Google Scholar]
  38. Pons M., Grewal T., Rius E., Schnitgerhans T., Jäckle S., Enrich C. Evidence for the Involvement of annexin 6 in the trafficking between the endocytic compartment and lysosomes. Exp Cell Res. 2001 Sep 10;269(1):13–22. doi: 10.1006/excr.2001.5268. [DOI] [PubMed] [Google Scholar]
  39. Pons M., Ihrke G., Koch S., Biermer M., Pol A., Grewal T., Jäckle S., Enrich C. Late endocytic compartments are major sites of annexin VI localization in NRK fibroblasts and polarized WIF-B hepatoma cells. Exp Cell Res. 2000 May 25;257(1):33–47. doi: 10.1006/excr.2000.4861. [DOI] [PubMed] [Google Scholar]
  40. Pons M., Tebar F., Kirchhoff M., Peiró S., de Diego I., Grewal T., Enrich C. Activation of Raf-1 is defective in annexin 6 overexpressing Chinese hamster ovary cells. FEBS Lett. 2001 Jul 13;501(1):69–73. doi: 10.1016/s0014-5793(01)02635-7. [DOI] [PubMed] [Google Scholar]
  41. Prusiner S. B., Scott M. R., DeArmond S. J., Cohen F. E. Prion protein biology. Cell. 1998 May 1;93(3):337–348. doi: 10.1016/s0092-8674(00)81163-0. [DOI] [PubMed] [Google Scholar]
  42. Randak C., Neth P., Auerswald E. A., Assfalg-Machleidt I., Roscher A. A., Hadorn H. B., Machleidt W. A recombinant polypeptide model of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator is a GTP-binding protein. FEBS Lett. 1996 Nov 25;398(1):97–100. doi: 10.1016/s0014-5793(96)01217-3. [DOI] [PubMed] [Google Scholar]
  43. Schmitz-Peiffer C., Browne C. L., Walker J. H., Biden T. J. Activated protein kinase C alpha associates with annexin VI from skeletal muscle. Biochem J. 1998 Mar 1;330(Pt 2):675–681. doi: 10.1042/bj3300675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Silvestro L., Axelsen P. H. Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding. Biochemistry. 1999 Jan 5;38(1):113–121. doi: 10.1021/bi981289o. [DOI] [PubMed] [Google Scholar]
  45. Sopkova-De Oliveira Santos J., Fischer S., Guilbert C., Lewit-Bentley A., Smith J. C. Pathway for large-scale conformational change in annexin V. Biochemistry. 2000 Nov 21;39(46):14065–14074. doi: 10.1021/bi000659h. [DOI] [PubMed] [Google Scholar]
  46. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  47. Tagoe C. E., Boustead C. M., Higgins S. J., Walker J. H. Characterization and immunolocalization of rat liver annexin VI. Biochim Biophys Acta. 1994 Jun 22;1192(2):272–280. doi: 10.1016/0005-2736(94)90128-7. [DOI] [PubMed] [Google Scholar]
  48. Wu F., Gericke A., Flach C. R., Mealy T. R., Seaton B. A., Mendelsohn R. Domain structure and molecular conformation in annexin V/1,2-dimyristoyl-sn-glycero-3-phosphate/Ca2+ aqueous monolayers: a Brewster angle microscopy/infrared reflection-absorption spectroscopy study. Biophys J. 1998 Jun;74(6):3273–3281. doi: 10.1016/S0006-3495(98)78034-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
  50. Zampighi G. A., Hall J. E., Kreman M. Purified lens junctional protein forms channels in planar lipid films. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8468–8472. doi: 10.1073/pnas.82.24.8468. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES