Abstract
The interaction of DNA with the polyamine spermine(4+) (Spm(4+)), sodium ions, and water molecules has been studied using molecular dynamics computer simulations in a system modeling a DNA crystal. The simulation model consisted of three B-DNA decamers in a periodic hexagonal cell, containing 1200 water molecules, 8 Spm(4+), 32 Na(+), and 4 Cl(-) ions. The present paper gives a more detailed account of a recently published report of this system and compares results on this mixed Spm(4+)/Na(+)-cation system with an molecular dynamics simulation carried out for the same DNA decamer under similar conditions with only sodium counterions (Korolev et al., J. Mol. Biol. 308:907). The presence of Spm(4+) makes significant influence on the DNA hydration and on the interaction of the sodium ions with DNA. Spermine pushes water molecules out of the minor groove, whereas Na(+) attracts and organizes water around DNA. The major binding site of the Spm(4+) amino groups and the Na(+) ions is the phosphate group of DNA. The flexible polyamine spermine displays a high presence in the minor groove but does not form long-lived and structurally defined complexes. Sodium ions compete with Spm(4+) for binding to the DNA bases in the minor groove. Sodium ions also have several strong binding sites in the major groove. The ability of water molecules, Spm(4+), and Na(+) to modulate the local structure of the DNA double helix is discussed.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auffinger P., Westhof E. Water and ion binding around r(UpA)12 and d(TpA)12 oligomers--comparison with RNA and DNA (CpG)12 duplexes. J Mol Biol. 2001 Feb 2;305(5):1057–1072. doi: 10.1006/jmbi.2000.4360. [DOI] [PubMed] [Google Scholar]
- Bancroft D., Williams L. D., Rich A., Egli M. The low-temperature crystal structure of the pure-spermine form of Z-DNA reveals binding of a spermine molecule in the minor groove. Biochemistry. 1994 Feb 8;33(5):1073–1086. doi: 10.1021/bi00171a005. [DOI] [PubMed] [Google Scholar]
- Beveridge D. L., McConnell K. J. Nucleic acids: theory and computer simulation, Y2K. Curr Opin Struct Biol. 2000 Apr;10(2):182–196. doi: 10.1016/s0959-440x(00)00076-2. [DOI] [PubMed] [Google Scholar]
- Bonvin A. M. Localisation and dynamics of sodium counterions around DNA in solution from molecular dynamics simulation. Eur Biophys J. 2000;29(1):57–60. doi: 10.1007/s002490050251. [DOI] [PubMed] [Google Scholar]
- Chiu T. K., Dickerson R. E. 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J Mol Biol. 2000 Aug 25;301(4):915–945. doi: 10.1006/jmbi.2000.4012. [DOI] [PubMed] [Google Scholar]
- Chiu T. K., Kaczor-Grzeskowiak M., Dickerson R. E. Absence of minor groove monovalent cations in the crosslinked dodecamer C-G-C-G-A-A-T-T-C-G-C-G. J Mol Biol. 1999 Sep 24;292(3):589–608. doi: 10.1006/jmbi.1999.3075. [DOI] [PubMed] [Google Scholar]
- Deng H., Bloomfield V. A., Benevides J. M., Thomas G. J., Jr Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res. 2000 Sep 1;28(17):3379–3385. doi: 10.1093/nar/28.17.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Sequence-specific binding of counterions to B-DNA. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):629–633. doi: 10.1073/pnas.97.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
- Duan Y., Wilkosz P., Crowley M., Rosenberg J. M. Molecular dynamics simulation study of DNA dodecamer d(CGCGAATTCGCG) in solution: conformation and hydration. J Mol Biol. 1997 Oct 3;272(4):553–572. doi: 10.1006/jmbi.1997.1247. [DOI] [PubMed] [Google Scholar]
- Egli M., Tereshko V., Teplova M., Minasov G., Joachimiak A., Sanishvili R., Weeks C. M., Miller R., Maier M. A., An H. X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution. Biopolymers. 1998;48(4):234–252. doi: 10.1002/(SICI)1097-0282(1998)48:4<234::AID-BIP4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Feig M., Pettitt B. M. A molecular simulation picture of DNA hydration around A- and B-DNA. Biopolymers. 1998;48(4):199–209. doi: 10.1002/(SICI)1097-0282(1998)48:4<199::AID-BIP2>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Feig M., Pettitt B. M. Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation. J Mol Biol. 1999 Mar 5;286(4):1075–1095. doi: 10.1006/jmbi.1998.2486. [DOI] [PubMed] [Google Scholar]
- Feig M., Pettitt B. M. Sodium and chlorine ions as part of the DNA solvation shell. Biophys J. 1999 Oct;77(4):1769–1781. doi: 10.1016/S0006-3495(99)77023-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feuerstein B. G., Pattabiraman N., Marton L. J. Molecular mechanics of the interactions of spermine with DNA: DNA bending as a result of ligand binding. Nucleic Acids Res. 1990 Mar 11;18(5):1271–1282. doi: 10.1093/nar/18.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feuerstein B. G., Pattabiraman N., Marton L. J. Spermine-DNA interactions: a theoretical study. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5948–5952. doi: 10.1073/pnas.83.16.5948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halle B., Denisov V. P. Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR. Biopolymers. 1998;48(4):210–233. doi: 10.1002/(sici)1097-0282(1998)48:4<210::aid-bip3>3.3.co;2-p. [DOI] [PubMed] [Google Scholar]
- Hamelberg D., Williams L. D., Wilson W. D. Influence of the dynamic positions of cations on the structure of the DNA minor groove: sequence-dependent effects. J Am Chem Soc. 2001 Aug 15;123(32):7745–7755. doi: 10.1021/ja010341s. [DOI] [PubMed] [Google Scholar]
- Haworth I. S., Rodger A., Richards W. G. A molecular dynamics simulation of a polyamine-induced conformational change of DNA. A possible mechanism for the B to Z transition. J Biomol Struct Dyn. 1992 Aug;10(1):195–211. doi: 10.1080/07391102.1992.10508638. [DOI] [PubMed] [Google Scholar]
- Howerton S. B., Sines C. C., VanDerveer D., Williams L. D. Locating monovalent cations in the grooves of B-DNA. Biochemistry. 2001 Aug 28;40(34):10023–10031. doi: 10.1021/bi010391+. [DOI] [PubMed] [Google Scholar]
- Hud N. V., Polak M. DNA-cation interactions: The major and minor grooves are flexible ionophores. Curr Opin Struct Biol. 2001 Jun;11(3):293–301. doi: 10.1016/s0959-440x(00)00205-0. [DOI] [PubMed] [Google Scholar]
- Hud N. V., Sklenár V., Feigon J. Localization of ammonium ions in the minor groove of DNA duplexes in solution and the origin of DNA A-tract bending. J Mol Biol. 1999 Feb 26;286(3):651–660. doi: 10.1006/jmbi.1998.2513. [DOI] [PubMed] [Google Scholar]
- Korolev N., Lyubartsev A. P., Nordenskiöld L., Laaksonen A. Spermine: an "invisible" component in the crystals of B-DNA. A grand canonical Monte Carlo and molecular dynamics simulation study. J Mol Biol. 2001 May 18;308(5):907–917. doi: 10.1006/jmbi.2001.4642. [DOI] [PubMed] [Google Scholar]
- Lee S. A., Lindsay S. M., Powell J. W., Weidlich T., Tao N. J., Lewen G. D. A Brillouin scattering study of the hydration of Li- and Na-DNA films. Biopolymers. 1987 Oct;26(10):1637–1665. doi: 10.1002/bip.360261002. [DOI] [PubMed] [Google Scholar]
- Lindsay S. M., Lee S. A., Powell J. W., Weidlich T., DeMarco C., Lewen G. D., Tao N. J., Rupprecht A. The origin of the A to B transition in DNA fibers and films. Biopolymers. 1988 Jun;27(6):1015–1043. doi: 10.1002/bip.360270610. [DOI] [PubMed] [Google Scholar]
- Lyubartsev A. P., Laaksonen A. Molecular dynamics simulations of DNA in solutions with different counter-ions. J Biomol Struct Dyn. 1998 Dec;16(3):579–592. doi: 10.1080/07391102.1998.10508271. [DOI] [PubMed] [Google Scholar]
- McConnell K. J., Beveridge D. L. DNA structure: what's in charge? J Mol Biol. 2000 Dec 15;304(5):803–820. doi: 10.1006/jmbi.2000.4167. [DOI] [PubMed] [Google Scholar]
- McFail-Isom L., Sines C. C., Williams L. D. DNA structure: cations in charge? Curr Opin Struct Biol. 1999 Jun;9(3):298–304. doi: 10.1016/S0959-440X(99)80040-2. [DOI] [PubMed] [Google Scholar]
- Schneider B., Berman H. M. Hydration of the DNA bases is local. Biophys J. 1995 Dec;69(6):2661–2669. doi: 10.1016/S0006-3495(95)80136-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider B., Patel K., Berman H. M. Hydration of the phosphate group in double-helical DNA. Biophys J. 1998 Nov;75(5):2422–2434. doi: 10.1016/S0006-3495(98)77686-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shamma T., Haworth I. S. Spermine inhibition of the 2,5-diaziridinyl-1,4-benzoquinone (DZQ) crosslinking reaction with DNA duplexes containing poly(purine). poly(pyrimidine) tracts. Nucleic Acids Res. 1999 Jul 1;27(13):2601–2609. doi: 10.1093/nar/27.13.2601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shui X., McFail-Isom L., Hu G. G., Williams L. D. The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry. 1998 Jun 9;37(23):8341–8355. doi: 10.1021/bi973073c. [DOI] [PubMed] [Google Scholar]
- Shui X., Sines C. C., McFail-Isom L., VanDerveer D., Williams L. D. Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry. 1998 Dec 1;37(48):16877–16887. doi: 10.1021/bi982063o. [DOI] [PubMed] [Google Scholar]
- Soler-López M., Malinina L., Liu J., Huynh-Dinh T., Subirana J. A. Water and ions in a high resolution structure of B-DNA. J Biol Chem. 1999 Aug 20;274(34):23683–23686. doi: 10.1074/jbc.274.34.23683. [DOI] [PubMed] [Google Scholar]
- Soler-López M., Malinina L., Subirana J. A. Solvent organization in an oligonucleotide crystal. The structure of d(GCGAATTCG)2 at atomic resolution. J Biol Chem. 2000 Jul 28;275(30):23034–23044. doi: 10.1074/jbc.M002119200. [DOI] [PubMed] [Google Scholar]
- Stofer E., Lavery R. Measuring the geometry of DNA grooves. Biopolymers. 1994 Mar;34(3):337–346. doi: 10.1002/bip.360340305. [DOI] [PubMed] [Google Scholar]
- Sy D., Hugot S., Savoye C., Ruiz S., Charlier M., Spotheim-Maurizot M. Radioprotection of DNA by spermine: a molecular modelling approach. Int J Radiat Biol. 1999 Aug;75(8):953–961. doi: 10.1080/095530099139719. [DOI] [PubMed] [Google Scholar]
- Tippin D. B., Sundaralingam M. Nine polymorphic crystal structures of d(CCGGGCCCGG), d(CCGGGCCm5CGG), d(Cm5CGGGCCm5CGG) and d(CCGGGCC(Br)5CGG) in three different conformations: effects of spermine binding and methylation on the bending and condensation of A-DNA. J Mol Biol. 1997 Apr 18;267(5):1171–1185. doi: 10.1006/jmbi.1997.0945. [DOI] [PubMed] [Google Scholar]
- Toukan K, Rahman A. Molecular-dynamics study of atomic motions in water. Phys Rev B Condens Matter. 1985 Mar 1;31(5):2643–2648. doi: 10.1103/physrevb.31.2643. [DOI] [PubMed] [Google Scholar]
- Vlieghe D., Turkenburg J. P., Van Meervelt L. B-DNA at atomic resolution reveals extended hydration patterns. Acta Crystallogr D Biol Crystallogr. 1999 Sep;55(Pt 9):1495–1502. doi: 10.1107/s0907444999007933. [DOI] [PubMed] [Google Scholar]
- Williams L. D., Maher L. J., 3rd Electrostatic mechanisms of DNA deformation. Annu Rev Biophys Biomol Struct. 2000;29:497–521. doi: 10.1146/annurev.biophys.29.1.497. [DOI] [PubMed] [Google Scholar]
- Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuki M., Grukhin V., Lee C. S., Haworth I. S. Spermine binding to GC-rich DNA: experimental and theoretical studies. Arch Biochem Biophys. 1996 Jan 1;325(1):39–46. doi: 10.1006/abbi.1996.0005. [DOI] [PubMed] [Google Scholar]
- Zakrzewska K., Pullman B. Spermine-nucleic acid interactions: a theoretical study. Biopolymers. 1986 Mar;25(3):375–392. doi: 10.1002/bip.360250302. [DOI] [PubMed] [Google Scholar]