Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):2860–2875. doi: 10.1016/S0006-3495(02)75628-2

On the competition between water, sodium ions, and spermine in binding to DNA: a molecular dynamics computer simulation study.

Nikolay Korolev 1, Alexander P Lyubartsev 1, Aatto Laaksonen 1, Lars Nordenskiöld 1
PMCID: PMC1302075  PMID: 12023210

Abstract

The interaction of DNA with the polyamine spermine(4+) (Spm(4+)), sodium ions, and water molecules has been studied using molecular dynamics computer simulations in a system modeling a DNA crystal. The simulation model consisted of three B-DNA decamers in a periodic hexagonal cell, containing 1200 water molecules, 8 Spm(4+), 32 Na(+), and 4 Cl(-) ions. The present paper gives a more detailed account of a recently published report of this system and compares results on this mixed Spm(4+)/Na(+)-cation system with an molecular dynamics simulation carried out for the same DNA decamer under similar conditions with only sodium counterions (Korolev et al., J. Mol. Biol. 308:907). The presence of Spm(4+) makes significant influence on the DNA hydration and on the interaction of the sodium ions with DNA. Spermine pushes water molecules out of the minor groove, whereas Na(+) attracts and organizes water around DNA. The major binding site of the Spm(4+) amino groups and the Na(+) ions is the phosphate group of DNA. The flexible polyamine spermine displays a high presence in the minor groove but does not form long-lived and structurally defined complexes. Sodium ions compete with Spm(4+) for binding to the DNA bases in the minor groove. Sodium ions also have several strong binding sites in the major groove. The ability of water molecules, Spm(4+), and Na(+) to modulate the local structure of the DNA double helix is discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffinger P., Westhof E. Water and ion binding around r(UpA)12 and d(TpA)12 oligomers--comparison with RNA and DNA (CpG)12 duplexes. J Mol Biol. 2001 Feb 2;305(5):1057–1072. doi: 10.1006/jmbi.2000.4360. [DOI] [PubMed] [Google Scholar]
  2. Bancroft D., Williams L. D., Rich A., Egli M. The low-temperature crystal structure of the pure-spermine form of Z-DNA reveals binding of a spermine molecule in the minor groove. Biochemistry. 1994 Feb 8;33(5):1073–1086. doi: 10.1021/bi00171a005. [DOI] [PubMed] [Google Scholar]
  3. Beveridge D. L., McConnell K. J. Nucleic acids: theory and computer simulation, Y2K. Curr Opin Struct Biol. 2000 Apr;10(2):182–196. doi: 10.1016/s0959-440x(00)00076-2. [DOI] [PubMed] [Google Scholar]
  4. Bonvin A. M. Localisation and dynamics of sodium counterions around DNA in solution from molecular dynamics simulation. Eur Biophys J. 2000;29(1):57–60. doi: 10.1007/s002490050251. [DOI] [PubMed] [Google Scholar]
  5. Chiu T. K., Dickerson R. E. 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J Mol Biol. 2000 Aug 25;301(4):915–945. doi: 10.1006/jmbi.2000.4012. [DOI] [PubMed] [Google Scholar]
  6. Chiu T. K., Kaczor-Grzeskowiak M., Dickerson R. E. Absence of minor groove monovalent cations in the crosslinked dodecamer C-G-C-G-A-A-T-T-C-G-C-G. J Mol Biol. 1999 Sep 24;292(3):589–608. doi: 10.1006/jmbi.1999.3075. [DOI] [PubMed] [Google Scholar]
  7. Deng H., Bloomfield V. A., Benevides J. M., Thomas G. J., Jr Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res. 2000 Sep 1;28(17):3379–3385. doi: 10.1093/nar/28.17.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denisov V. P., Halle B. Sequence-specific binding of counterions to B-DNA. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):629–633. doi: 10.1073/pnas.97.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
  10. Duan Y., Wilkosz P., Crowley M., Rosenberg J. M. Molecular dynamics simulation study of DNA dodecamer d(CGCGAATTCGCG) in solution: conformation and hydration. J Mol Biol. 1997 Oct 3;272(4):553–572. doi: 10.1006/jmbi.1997.1247. [DOI] [PubMed] [Google Scholar]
  11. Egli M., Tereshko V., Teplova M., Minasov G., Joachimiak A., Sanishvili R., Weeks C. M., Miller R., Maier M. A., An H. X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution. Biopolymers. 1998;48(4):234–252. doi: 10.1002/(SICI)1097-0282(1998)48:4<234::AID-BIP4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  12. Feig M., Pettitt B. M. A molecular simulation picture of DNA hydration around A- and B-DNA. Biopolymers. 1998;48(4):199–209. doi: 10.1002/(SICI)1097-0282(1998)48:4<199::AID-BIP2>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  13. Feig M., Pettitt B. M. Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation. J Mol Biol. 1999 Mar 5;286(4):1075–1095. doi: 10.1006/jmbi.1998.2486. [DOI] [PubMed] [Google Scholar]
  14. Feig M., Pettitt B. M. Sodium and chlorine ions as part of the DNA solvation shell. Biophys J. 1999 Oct;77(4):1769–1781. doi: 10.1016/S0006-3495(99)77023-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Feuerstein B. G., Pattabiraman N., Marton L. J. Molecular mechanics of the interactions of spermine with DNA: DNA bending as a result of ligand binding. Nucleic Acids Res. 1990 Mar 11;18(5):1271–1282. doi: 10.1093/nar/18.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feuerstein B. G., Pattabiraman N., Marton L. J. Spermine-DNA interactions: a theoretical study. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5948–5952. doi: 10.1073/pnas.83.16.5948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Halle B., Denisov V. P. Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR. Biopolymers. 1998;48(4):210–233. doi: 10.1002/(sici)1097-0282(1998)48:4<210::aid-bip3>3.3.co;2-p. [DOI] [PubMed] [Google Scholar]
  18. Hamelberg D., Williams L. D., Wilson W. D. Influence of the dynamic positions of cations on the structure of the DNA minor groove: sequence-dependent effects. J Am Chem Soc. 2001 Aug 15;123(32):7745–7755. doi: 10.1021/ja010341s. [DOI] [PubMed] [Google Scholar]
  19. Haworth I. S., Rodger A., Richards W. G. A molecular dynamics simulation of a polyamine-induced conformational change of DNA. A possible mechanism for the B to Z transition. J Biomol Struct Dyn. 1992 Aug;10(1):195–211. doi: 10.1080/07391102.1992.10508638. [DOI] [PubMed] [Google Scholar]
  20. Howerton S. B., Sines C. C., VanDerveer D., Williams L. D. Locating monovalent cations in the grooves of B-DNA. Biochemistry. 2001 Aug 28;40(34):10023–10031. doi: 10.1021/bi010391+. [DOI] [PubMed] [Google Scholar]
  21. Hud N. V., Polak M. DNA-cation interactions: The major and minor grooves are flexible ionophores. Curr Opin Struct Biol. 2001 Jun;11(3):293–301. doi: 10.1016/s0959-440x(00)00205-0. [DOI] [PubMed] [Google Scholar]
  22. Hud N. V., Sklenár V., Feigon J. Localization of ammonium ions in the minor groove of DNA duplexes in solution and the origin of DNA A-tract bending. J Mol Biol. 1999 Feb 26;286(3):651–660. doi: 10.1006/jmbi.1998.2513. [DOI] [PubMed] [Google Scholar]
  23. Korolev N., Lyubartsev A. P., Nordenskiöld L., Laaksonen A. Spermine: an "invisible" component in the crystals of B-DNA. A grand canonical Monte Carlo and molecular dynamics simulation study. J Mol Biol. 2001 May 18;308(5):907–917. doi: 10.1006/jmbi.2001.4642. [DOI] [PubMed] [Google Scholar]
  24. Lee S. A., Lindsay S. M., Powell J. W., Weidlich T., Tao N. J., Lewen G. D. A Brillouin scattering study of the hydration of Li- and Na-DNA films. Biopolymers. 1987 Oct;26(10):1637–1665. doi: 10.1002/bip.360261002. [DOI] [PubMed] [Google Scholar]
  25. Lindsay S. M., Lee S. A., Powell J. W., Weidlich T., DeMarco C., Lewen G. D., Tao N. J., Rupprecht A. The origin of the A to B transition in DNA fibers and films. Biopolymers. 1988 Jun;27(6):1015–1043. doi: 10.1002/bip.360270610. [DOI] [PubMed] [Google Scholar]
  26. Lyubartsev A. P., Laaksonen A. Molecular dynamics simulations of DNA in solutions with different counter-ions. J Biomol Struct Dyn. 1998 Dec;16(3):579–592. doi: 10.1080/07391102.1998.10508271. [DOI] [PubMed] [Google Scholar]
  27. McConnell K. J., Beveridge D. L. DNA structure: what's in charge? J Mol Biol. 2000 Dec 15;304(5):803–820. doi: 10.1006/jmbi.2000.4167. [DOI] [PubMed] [Google Scholar]
  28. McFail-Isom L., Sines C. C., Williams L. D. DNA structure: cations in charge? Curr Opin Struct Biol. 1999 Jun;9(3):298–304. doi: 10.1016/S0959-440X(99)80040-2. [DOI] [PubMed] [Google Scholar]
  29. Schneider B., Berman H. M. Hydration of the DNA bases is local. Biophys J. 1995 Dec;69(6):2661–2669. doi: 10.1016/S0006-3495(95)80136-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schneider B., Patel K., Berman H. M. Hydration of the phosphate group in double-helical DNA. Biophys J. 1998 Nov;75(5):2422–2434. doi: 10.1016/S0006-3495(98)77686-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shamma T., Haworth I. S. Spermine inhibition of the 2,5-diaziridinyl-1,4-benzoquinone (DZQ) crosslinking reaction with DNA duplexes containing poly(purine). poly(pyrimidine) tracts. Nucleic Acids Res. 1999 Jul 1;27(13):2601–2609. doi: 10.1093/nar/27.13.2601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shui X., McFail-Isom L., Hu G. G., Williams L. D. The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry. 1998 Jun 9;37(23):8341–8355. doi: 10.1021/bi973073c. [DOI] [PubMed] [Google Scholar]
  33. Shui X., Sines C. C., McFail-Isom L., VanDerveer D., Williams L. D. Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry. 1998 Dec 1;37(48):16877–16887. doi: 10.1021/bi982063o. [DOI] [PubMed] [Google Scholar]
  34. Soler-López M., Malinina L., Liu J., Huynh-Dinh T., Subirana J. A. Water and ions in a high resolution structure of B-DNA. J Biol Chem. 1999 Aug 20;274(34):23683–23686. doi: 10.1074/jbc.274.34.23683. [DOI] [PubMed] [Google Scholar]
  35. Soler-López M., Malinina L., Subirana J. A. Solvent organization in an oligonucleotide crystal. The structure of d(GCGAATTCG)2 at atomic resolution. J Biol Chem. 2000 Jul 28;275(30):23034–23044. doi: 10.1074/jbc.M002119200. [DOI] [PubMed] [Google Scholar]
  36. Stofer E., Lavery R. Measuring the geometry of DNA grooves. Biopolymers. 1994 Mar;34(3):337–346. doi: 10.1002/bip.360340305. [DOI] [PubMed] [Google Scholar]
  37. Sy D., Hugot S., Savoye C., Ruiz S., Charlier M., Spotheim-Maurizot M. Radioprotection of DNA by spermine: a molecular modelling approach. Int J Radiat Biol. 1999 Aug;75(8):953–961. doi: 10.1080/095530099139719. [DOI] [PubMed] [Google Scholar]
  38. Tippin D. B., Sundaralingam M. Nine polymorphic crystal structures of d(CCGGGCCCGG), d(CCGGGCCm5CGG), d(Cm5CGGGCCm5CGG) and d(CCGGGCC(Br)5CGG) in three different conformations: effects of spermine binding and methylation on the bending and condensation of A-DNA. J Mol Biol. 1997 Apr 18;267(5):1171–1185. doi: 10.1006/jmbi.1997.0945. [DOI] [PubMed] [Google Scholar]
  39. Toukan K, Rahman A. Molecular-dynamics study of atomic motions in water. Phys Rev B Condens Matter. 1985 Mar 1;31(5):2643–2648. doi: 10.1103/physrevb.31.2643. [DOI] [PubMed] [Google Scholar]
  40. Vlieghe D., Turkenburg J. P., Van Meervelt L. B-DNA at atomic resolution reveals extended hydration patterns. Acta Crystallogr D Biol Crystallogr. 1999 Sep;55(Pt 9):1495–1502. doi: 10.1107/s0907444999007933. [DOI] [PubMed] [Google Scholar]
  41. Williams L. D., Maher L. J., 3rd Electrostatic mechanisms of DNA deformation. Annu Rev Biophys Biomol Struct. 2000;29:497–521. doi: 10.1146/annurev.biophys.29.1.497. [DOI] [PubMed] [Google Scholar]
  42. Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yuki M., Grukhin V., Lee C. S., Haworth I. S. Spermine binding to GC-rich DNA: experimental and theoretical studies. Arch Biochem Biophys. 1996 Jan 1;325(1):39–46. doi: 10.1006/abbi.1996.0005. [DOI] [PubMed] [Google Scholar]
  44. Zakrzewska K., Pullman B. Spermine-nucleic acid interactions: a theoretical study. Biopolymers. 1986 Mar;25(3):375–392. doi: 10.1002/bip.360250302. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES