Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):2876–2891. doi: 10.1016/S0006-3495(02)75629-4

Assessing accumulated solvent near a macromolecular solute by preferential interaction coefficients.

Karen E S Tang 1, Victor A Bloomfield 1
PMCID: PMC1302076  PMID: 12023211

Abstract

Biological macromolecules are often studied in mixed solvents. To understand cosolvent-macromolecule interactions, the preferential interaction coefficient, Gamma(3), may help determine surface solvent compositions. Gamma(3) measures the amounts of water, B(1), and cosolvent, B(3), within the "local domain," the (possibly far-reaching) region surrounding the macromolecule where the solvent is non-bulk-like. The local domain's boundary is, however, vague and it is unclear which molecules are counted in B(i). It is useful to explore a simple model system to make B(i) more concrete and to understand which aspects of the surface solvent distribution, rho(x), are sampled by Gamma(3). We performed computer simulations on a two-dimensional (2D) system consisting of a hard-wall solute (the macromolecule) in a mixed solvent (hard disks of different radii). We simultaneously calculated Gamma(3) and rho(x). We found that 1) in practice, the local domain's boundary is demarked by the outer limit of the first cosolvent (not water) layer; B(i) mainly counts the solvent near the macromolecule; 2) assuming B(1) to count only the waters within the first water layer is a poor approximation; 3) when determining B(1) and B(3), water and cosolvent molecules must be counted from the same region of space. We speculate that these 2D results may serve as a first-order approximation for the dominant contributions to Gamma(3) even in three dimensions, so long as the cosolvent is not strongly excluded from the macromolecular surface and there is no significant long-ranged solvent structure.

Full Text

The Full Text of this article is available as a PDF (309.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Timasheff S. N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 1985 Nov 19;24(24):6756–6762. doi: 10.1021/bi00345a005. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Timasheff S. N. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry. 1982 Dec 7;21(25):6545–6552. doi: 10.1021/bi00268a034. [DOI] [PubMed] [Google Scholar]
  3. Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
  4. Bhat R., Timasheff S. N. Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci. 1992 Sep;1(9):1133–1143. doi: 10.1002/pro.5560010907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bull H. B., Breese K. Protein hydration. I. Binding sites. Arch Biochem Biophys. 1968 Nov;128(2):488–496. doi: 10.1016/0003-9861(68)90055-6. [DOI] [PubMed] [Google Scholar]
  6. Burling F. T., Weis W. I., Flaherty K. M., Brünger A. T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science. 1996 Jan 5;271(5245):72–77. doi: 10.1126/science.271.5245.72. [DOI] [PubMed] [Google Scholar]
  7. CASASSA E. F., EISENBERG H. THERMODYNAMIC ANALYSIS OF MULTICOMPONENT SOLUTIONS. Adv Protein Chem. 1964;19:287–395. doi: 10.1016/s0065-3233(08)60191-6. [DOI] [PubMed] [Google Scholar]
  8. Courtenay E. S., Capp M. W., Anderson C. F., Record M. T., Jr Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro. Biochemistry. 2000 Apr 18;39(15):4455–4471. doi: 10.1021/bi992887l. [DOI] [PubMed] [Google Scholar]
  9. Courtenay E. S., Capp M. W., Saecker R. M., Record M. T., Jr Thermodynamic analysis of interactions between denaturants and protein surface exposed on unfolding: interpretation of urea and guanidinium chloride m-values and their correlation with changes in accessible surface area (ASA) using preferential interaction coefficients and the local-bulk domain model. Proteins. 2000;Suppl 4:72–85. doi: 10.1002/1097-0134(2000)41:4+<72::aid-prot70>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg H. Protein and nucleic acid hydration and cosolvent interactions: establishment of reliable baseline values at high cosolvent concentrations. Biophys Chem. 1994 Dec;53(1-2):57–68. doi: 10.1016/0301-4622(94)00076-x. [DOI] [PubMed] [Google Scholar]
  11. Inoue H., Timasheff S. N. Preferential and absolute interactions of solvent components with proteins in mixed solvent systems. Biopolymers. 1972;11(4):737–743. doi: 10.1002/bip.1972.360110402. [DOI] [PubMed] [Google Scholar]
  12. Komeiji Y., Uebayasi M., Someya J., Yamato I. A molecular dynamics study of solvent behavior around a protein. Proteins. 1993 Jul;16(3):268–277. doi: 10.1002/prot.340160305. [DOI] [PubMed] [Google Scholar]
  13. Kuntz I. D. Hydration of macromolecules. IV. Polypeptide conformation in frozen solutions. J Am Chem Soc. 1971 Jan 27;93(2):516–518. doi: 10.1021/ja00731a037. [DOI] [PubMed] [Google Scholar]
  14. Kuntz I. D., Jr, Kauzmann W. Hydration of proteins and polypeptides. Adv Protein Chem. 1974;28:239–345. doi: 10.1016/s0065-3233(08)60232-6. [DOI] [PubMed] [Google Scholar]
  15. Lee J. C., Lee L. L. Interaction of calf brain tubulin with poly(ethylene glycols). Biochemistry. 1979 Nov 27;18(24):5518–5526. doi: 10.1021/bi00591a040. [DOI] [PubMed] [Google Scholar]
  16. Lee J. C., Lee L. L. Preferential solvent interactions between proteins and polyethylene glycols. J Biol Chem. 1981 Jan 25;256(2):625–631. [PubMed] [Google Scholar]
  17. Lee J. C., Timasheff S. N. Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry. 1974 Jan 15;13(2):257–265. doi: 10.1021/bi00699a005. [DOI] [PubMed] [Google Scholar]
  18. Lee J. C., Timasheff S. N. The stabilization of proteins by sucrose. J Biol Chem. 1981 Jul 25;256(14):7193–7201. [PubMed] [Google Scholar]
  19. Levitt M., Park B. H. Water: now you see it, now you don't. Structure. 1993 Dec 15;1(4):223–226. doi: 10.1016/0969-2126(93)90011-5. [DOI] [PubMed] [Google Scholar]
  20. Liepinsh E., Otting G. Organic solvents identify specific ligand binding sites on protein surfaces. Nat Biotechnol. 1997 Mar;15(3):264–268. doi: 10.1038/nbt0397-264. [DOI] [PubMed] [Google Scholar]
  21. Liepinsh E., Sodano P., Tassin S., Marion D., Vovelle F., Otting G. Solvation study of the non-specific lipid transfer protein from wheat by intermolecular NOEs with water and small organic molecules. J Biomol NMR. 1999 Nov;15(3):213–225. doi: 10.1023/a:1008331519459. [DOI] [PubMed] [Google Scholar]
  22. Lounnas V., Pettitt B. M., Phillips G. N., Jr A global model of the protein-solvent interface. Biophys J. 1994 Mar;66(3 Pt 1):601–614. doi: 10.1016/s0006-3495(94)80835-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Makarov V. A., Andrews B. K., Pettitt B. M. Reconstructing the protein-water interface. Biopolymers. 1998 Jun;45(7):469–478. doi: 10.1002/(SICI)1097-0282(199806)45:7<469::AID-BIP1>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  24. Na G. C., Timasheff S. N. Interaction of calf brain tubulin with glycerol. J Mol Biol. 1981 Sep 5;151(1):165–178. doi: 10.1016/0022-2836(81)90226-6. [DOI] [PubMed] [Google Scholar]
  25. Olmsted M. C., Anderson C. F., Record M. T., Jr Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers: a grand canonical Monte Carlo analysis. Biopolymers. 1991 Nov;31(13):1593–1604. doi: 10.1002/bip.360311314. [DOI] [PubMed] [Google Scholar]
  26. Olmsted M. C., Anderson C. F., Record M. T., Jr Monte Carlo description of oligoelectrolyte properties of DNA oligomers: range of the end effect and the approach of molecular and thermodynamic properties to the polyelectrolyte limits. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7766–7770. doi: 10.1073/pnas.86.20.7766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Olmsted M. C., Bond J. P., Anderson C. F., Record M. T., Jr Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers. Biophys J. 1995 Feb;68(2):634–647. doi: 10.1016/S0006-3495(95)80224-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Otting G., Liepinsh E., Wüthrich K. Protein hydration in aqueous solution. Science. 1991 Nov 15;254(5034):974–980. doi: 10.1126/science.1948083. [DOI] [PubMed] [Google Scholar]
  29. Parsegian V. A., Rand R. P., Rau D. C. Macromolecules and water: probing with osmotic stress. Methods Enzymol. 1995;259:43–94. doi: 10.1016/0076-6879(95)59039-0. [DOI] [PubMed] [Google Scholar]
  30. Parsegian V. A., Rand R. P., Rau D. C. Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3987–3992. doi: 10.1073/pnas.97.8.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pessen H., Kumosinski T. F. Measurements of protein hydration by various techniques. Methods Enzymol. 1985;117:219–255. doi: 10.1016/s0076-6879(85)17016-3. [DOI] [PubMed] [Google Scholar]
  32. Pettitt B. M., Makarov V. A., Andrews B. K. Protein hydration density: theory, simulations and crystallography. Curr Opin Struct Biol. 1998 Apr;8(2):218–221. doi: 10.1016/s0959-440x(98)80042-0. [DOI] [PubMed] [Google Scholar]
  33. Record M. T., Jr, Anderson C. F. Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of a two-domain model. Biophys J. 1995 Mar;68(3):786–794. doi: 10.1016/S0006-3495(95)80254-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Record M. T., Jr, Zhang W., Anderson C. F. Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: a practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and osmotic effects of salts. Adv Protein Chem. 1998;51:281–353. doi: 10.1016/s0065-3233(08)60655-5. [DOI] [PubMed] [Google Scholar]
  35. Reisler E., Haik Y., Eisenberg H. Bovine serum albumin and aqueous guanidine hydrochloride solutions. Preferential and absolute interactions and comparison with other systems. Biochemistry. 1977 Jan 25;16(2):197–203. doi: 10.1021/bi00621a006. [DOI] [PubMed] [Google Scholar]
  36. Rupley J. A., Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172. doi: 10.1016/s0065-3233(08)60197-7. [DOI] [PubMed] [Google Scholar]
  37. Schellman J. A. A simple model for solvation in mixed solvents. Applications to the stabilization and destabilization of macromolecular structures. Biophys Chem. 1990 Aug 31;37(1-3):121–140. doi: 10.1016/0301-4622(90)88013-i. [DOI] [PubMed] [Google Scholar]
  38. Svergun D. I., Richard S., Koch M. H., Sayers Z., Kuprin S., Zaccai G. Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2267–2272. doi: 10.1073/pnas.95.5.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tang K. E., Bloomfield V. A. Excluded volume in solvation: sensitivity of scaled-particle theory to solvent size and density. Biophys J. 2000 Nov;79(5):2222–2234. doi: 10.1016/S0006-3495(00)76470-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Timasheff S. N. Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. Adv Protein Chem. 1998;51:355–432. doi: 10.1016/s0065-3233(08)60656-7. [DOI] [PubMed] [Google Scholar]
  41. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  42. Tirado-Rives J., Orozco M., Jorgensen W. L. Molecular dynamics simulations of the unfolding of barnase in water and 8 M aqueous urea. Biochemistry. 1997 Jun 17;36(24):7313–7329. doi: 10.1021/bi970096i. [DOI] [PubMed] [Google Scholar]
  43. Vogler E. A. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 1998 Feb;74:69–117. doi: 10.1016/s0001-8686(97)00040-7. [DOI] [PubMed] [Google Scholar]
  44. Zhang W., Capp M. W., Bond J. P., Anderson C. F., Record M. T., Jr Thermodynamic characterization of interactions of native bovine serum albumin with highly excluded (glycine betaine) and moderately accumulated (urea) solutes by a novel application of vapor pressure osmometry. Biochemistry. 1996 Aug 13;35(32):10506–10516. doi: 10.1021/bi960795f. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES