Abstract
The microtubule-severing enzyme katanin uses ATP hydrolysis to disrupt noncovalent bonds between tubulin dimers within the microtubule lattice. Although its microtubule severing activity is likely important for fundamental processes including mitosis and axonal outgrowth, its mechanism of action is poorly understood. To better understand this activity, an in vitro assay was developed to enable the real-time observation of katanin-mediated severing of individual, mechanically unconstrained microtubules. To interpret the experimental observations, a number of theoretical models were developed and compared quantitatively to the experimental data via Monte Carlo simulation. Models that assumed that katanin acts on a uniform microtubule lattice were incompatible with the in vitro data, whereas a model that assumed that katanin acts preferentially on spatially infrequent microtubule lattice defects was found to correctly predict the experimentally observed breaking rates, number and spatial frequency of severing events, final levels of severing, and sensitivity to katanin concentration over the range 6-300 nM. As a result of our analysis, we propose that defects in the microtubule lattice, which are known to exist but previously not known to have any biological function, serve as sites for katanin activity.
Full Text
The Full Text of this article is available as a PDF (278.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad F. J., Yu W., McNally F. J., Baas P. W. An essential role for katanin in severing microtubules in the neuron. J Cell Biol. 1999 Apr 19;145(2):305–315. doi: 10.1083/jcb.145.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnal I., Wade R. H. How does taxol stabilize microtubules? Curr Biol. 1995 Aug 1;5(8):900–908. doi: 10.1016/s0960-9822(95)00180-1. [DOI] [PubMed] [Google Scholar]
- Bell C. W., Fraser C., Sale W. S., Tang W. J., Gibbons I. R. Preparation and purification of dynein. Methods Cell Biol. 1982;24:373–397. doi: 10.1016/s0091-679x(08)60666-4. [DOI] [PubMed] [Google Scholar]
- Chrétien D., Flyvbjerg H., Fuller S. D. Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin. Eur Biophys J. 1998;27(5):490–500. doi: 10.1007/s002490050159. [DOI] [PubMed] [Google Scholar]
- Chrétien D., Fuller S. D. Microtubules switch occasionally into unfavorable configurations during elongation. J Mol Biol. 2000 May 12;298(4):663–676. doi: 10.1006/jmbi.2000.3696. [DOI] [PubMed] [Google Scholar]
- Chrétien D., Metoz F., Verde F., Karsenti E., Wade R. H. Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J Cell Biol. 1992 Jun;117(5):1031–1040. doi: 10.1083/jcb.117.5.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dye R. B., Flicker P. F., Lien D. Y., Williams R. C., Jr End-stabilized microtubules observed in vitro: stability, subunit, interchange, and breakage. Cell Motil Cytoskeleton. 1992;21(3):171–186. doi: 10.1002/cm.970210302. [DOI] [PubMed] [Google Scholar]
- Díaz J. F., Valpuesta J. M., Chacón P., Diakun G., Andreu J. M. Changes in microtubule protofilament number induced by Taxol binding to an easily accessible site. Internal microtubule dynamics. J Biol Chem. 1998 Dec 11;273(50):33803–33810. doi: 10.1074/jbc.273.50.33803. [DOI] [PubMed] [Google Scholar]
- Hartman J. J., Mahr J., McNally K., Okawa K., Iwamatsu A., Thomas S., Cheesman S., Heuser J., Vale R. D., McNally F. J. Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell. 1998 Apr 17;93(2):277–287. doi: 10.1016/s0092-8674(00)81578-0. [DOI] [PubMed] [Google Scholar]
- Hartman J. J., Vale R. D. Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science. 1999 Oct 22;286(5440):782–785. doi: 10.1126/science.286.5440.782. [DOI] [PubMed] [Google Scholar]
- Hyman A. A., Chrétien D., Arnal I., Wade R. H. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylene-diphosphonate. J Cell Biol. 1995 Jan;128(1-2):117–125. doi: 10.1083/jcb.128.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jánosi I. M., Chrétien D., Flyvbjerg H. Modeling elastic properties of microtubule tips and walls. Eur Biophys J. 1998;27(5):501–513. doi: 10.1007/s002490050160. [DOI] [PubMed] [Google Scholar]
- Lohret T. A., McNally F. J., Quarmby L. M. A role for katanin-mediated axonemal severing during Chlamydomonas deflagellation. Mol Biol Cell. 1998 May;9(5):1195–1207. doi: 10.1091/mbc.9.5.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandelkow E. M., Mandelkow E., Milligan R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol. 1991 Sep;114(5):977–991. doi: 10.1083/jcb.114.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNally F. J., Okawa K., Iwamatsu A., Vale R. D. Katanin, the microtubule-severing ATPase, is concentrated at centrosomes. J Cell Sci. 1996 Mar;109(Pt 3):561–567. doi: 10.1242/jcs.109.3.561. [DOI] [PubMed] [Google Scholar]
- McNally F. J., Vale R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell. 1993 Nov 5;75(3):419–429. doi: 10.1016/0092-8674(93)90377-3. [DOI] [PubMed] [Google Scholar]
- McNally F. Capturing a ring of samurai. Nat Cell Biol. 2000 Jan;2(1):E4–E7. doi: 10.1038/71385. [DOI] [PubMed] [Google Scholar]
- Müller-Reichert T., Chrétien D., Severin F., Hyman A. A. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3661–3666. doi: 10.1073/pnas.95.7.3661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odde D. J., Ma L., Briggs A. H., DeMarco A., Kirschner M. W. Microtubule bending and breaking in living fibroblast cells. J Cell Sci. 1999 Oct;112(Pt 19):3283–3288. doi: 10.1242/jcs.112.19.3283. [DOI] [PubMed] [Google Scholar]
- Odde D. Diffusion inside microtubules. Eur Biophys J. 1998;27(5):514–520. doi: 10.1007/s002490050161. [DOI] [PubMed] [Google Scholar]
- Simon J. R., Salmon E. D. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. J Cell Sci. 1990 Aug;96(Pt 4):571–582. doi: 10.1242/jcs.96.4.571. [DOI] [PubMed] [Google Scholar]
- Thorn K. S., Ubersax J. A., Vale R. D. Engineering the processive run length of the kinesin motor. J Cell Biol. 2000 Nov 27;151(5):1093–1100. doi: 10.1083/jcb.151.5.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D. AAA proteins. Lords of the ring. J Cell Biol. 2000 Jul 10;150(1):F13–F19. doi: 10.1083/jcb.150.1.f13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D. Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell. 1991 Feb 22;64(4):827–839. doi: 10.1016/0092-8674(91)90511-v. [DOI] [PubMed] [Google Scholar]
- Waterman-Storer C. M., Salmon E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol. 1997 Oct 20;139(2):417–434. doi: 10.1083/jcb.139.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]