Abstract
Ultrasensitive cascades often implement thresholding operations in cell signaling and gene regulatory networks, converting graded input signals into discrete all-or-none outputs. However, the biochemical and genetic reactions involved in such cascades are subject to random fluctuations, leading to noise in output signal levels. Here we prove that cascades operating near saturation have output signal fluctuations that are bounded in magnitude, even as the number of noisy cascade stages becomes large. We show that these fluctuation-bounded cascades can be used to attenuate the noise in an input signal, and we find the optimal cascade length required to achieve the best possible noise reduction. Cascades with ultrasensitive transfer functions naturally operate near saturation, and can be made to simultaneously implement thresholding and noise reduction. They are therefore ideally suited to mediate signal transfer in both natural and artificial biological networks.
Full Text
The Full Text of this article is available as a PDF (240.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becskei A., Serrano L. Engineering stability in gene networks by autoregulation. Nature. 2000 Jun 1;405(6786):590–593. doi: 10.1038/35014651. [DOI] [PubMed] [Google Scholar]
- Berg O. G., Paulsson J., Ehrenberg M. Fluctuations and quality of control in biological cells: zero-order ultrasensitivity reinvestigated. Biophys J. 2000 Sep;79(3):1228–1236. doi: 10.1016/S0006-3495(00)76377-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chock P. B., Stadtman E. R. Superiority of interconvertible enzyme cascades in metabolite regulation: analysis of multicyclic systems. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2766–2770. doi: 10.1073/pnas.74.7.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Detwiler P. B., Ramanathan S., Sengupta A., Shraiman B. I. Engineering aspects of enzymatic signal transduction: photoreceptors in the retina. Biophys J. 2000 Dec;79(6):2801–2817. doi: 10.1016/S0006-3495(00)76519-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Machleder E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998 May 8;280(5365):895–898. doi: 10.1126/science.280.5365.895. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci. 1996 Dec;21(12):460–466. doi: 10.1016/s0968-0004(96)20026-x. [DOI] [PubMed] [Google Scholar]
- Goldbeter A., Koshland D. E., Jr An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6840–6844. doi: 10.1073/pnas.78.11.6840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustin M. C., Albertyn J., Alexander M., Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1998 Dec;62(4):1264–1300. doi: 10.1128/mmbr.62.4.1264-1300.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasty J., Pradines J., Dolnik M., Collins J. J. Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2075–2080. doi: 10.1073/pnas.040411297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalir S., McClure J., Pabbaraju K., Southward C., Ronen M., Leibler S., Surette M. G., Alon U. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science. 2001 Jun 15;292(5524):2080–2083. doi: 10.1126/science.1058758. [DOI] [PubMed] [Google Scholar]
- Kepler T. B., Elston T. C. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J. 2001 Dec;81(6):3116–3136. doi: 10.1016/S0006-3495(01)75949-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb T. D. Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):566–570. doi: 10.1073/pnas.93.2.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAdams H. H., Arkin A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 1999 Feb;15(2):65–69. doi: 10.1016/s0168-9525(98)01659-x. [DOI] [PubMed] [Google Scholar]
- McAdams H. H., Arkin A. Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):814–819. doi: 10.1073/pnas.94.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulsson J., Berg O. G., Ehrenberg M. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7148–7153. doi: 10.1073/pnas.110057697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadtman E. R., Chock P. B. Superiority of interconvertible enzyme cascades in metabolic regulation: analysis of monocyclic systems. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2761–2765. doi: 10.1073/pnas.74.7.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thattai M., van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A. 2001 Jul 3;98(15):8614–8619. doi: 10.1073/pnas.151588598. [DOI] [PMC free article] [PubMed] [Google Scholar]