Abstract
Fundamental to all mammalian cells is the adherence of the lipid bilayer membrane to the underlying membrane associated cytoskeleton. To investigate this adhesion, we physically detach the lipid membrane from the cell by mechanically forming membrane tethers. For the most part these have been tethers formed from either neutrophils or red cells. Here we do a simple thermodynamic analysis of the tether formation process using the entire cell, including tether, as the control volume. For a neutrophil, we show that the total adhesion energy per unit area between lipid membrane and cytoskeleton depends on the square of the tether force. For a flaccid red cell, we show that the total adhesion energy minus the tension in the spectrin cytoskeleton depends also on the square of the tether force. Finally, we discuss briefly the viscous flow of membrane. Using published data we calculate and compare values for the various adhesion energies and viscosities.
Full Text
The Full Text of this article is available as a PDF (78.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bo L., Waugh R. E. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J. 1989 Mar;55(3):509–517. doi: 10.1016/S0006-3495(89)82844-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boey S. K., Boal D. H., Discher D. E. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J. 1998 Sep;75(3):1573–1583. doi: 10.1016/S0006-3495(98)74075-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dai J., Sheetz M. P. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J. 1995 Mar;68(3):988–996. doi: 10.1016/S0006-3495(95)80274-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dai J., Sheetz M. P., Wan X., Morris C. E. Membrane tension in swelling and shrinking molluscan neurons. J Neurosci. 1998 Sep 1;18(17):6681–6692. doi: 10.1523/JNEUROSCI.18-17-06681.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Discher D. E., Boal D. H., Boey S. K. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J. 1998 Sep;75(3):1584–1597. doi: 10.1016/S0006-3495(98)74076-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J. 1989 Jul;56(1):151–160. doi: 10.1016/S0006-3495(89)82660-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrich V., Waugh R. E. A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. Ann Biomed Eng. 1996 Sep-Oct;24(5):595–605. doi: 10.1007/BF02684228. [DOI] [PubMed] [Google Scholar]
- Hochmuth F. M., Shao J. Y., Dai J., Sheetz M. P. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J. 1996 Jan;70(1):358–369. doi: 10.1016/S0006-3495(96)79577-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochmuth R. M., Evans C. A., Wiles H. C., McCown J. T. Mechanical measurement of red cell membrane thickness. Science. 1983 Apr 1;220(4592):101–102. doi: 10.1126/science.6828875. [DOI] [PubMed] [Google Scholar]
- Hochmuth R. M., Evans E. A. Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis. Biophys J. 1982 Jul;39(1):71–81. doi: 10.1016/S0006-3495(82)84492-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochmuth R. M., Mohandas N., Blackshear P. L., Jr Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J. 1973 Aug;13(8):747–762. doi: 10.1016/S0006-3495(73)86021-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochmuth R. M., Wiles H. C., Evans E. A., McCown J. T. Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment. Biophys J. 1982 Jul;39(1):83–89. doi: 10.1016/S0006-3495(82)84493-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang W. C., Waugh R. E. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys J. 1997 Jun;72(6):2669–2678. doi: 10.1016/S0006-3495(97)78910-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman W. A. Shear flow over a protrusion from a plane wall: addendum. J Biomech. 1972 Nov;5(6):643–643. doi: 10.1016/0021-9290(72)90036-x. [DOI] [PubMed] [Google Scholar]
- Needham D., Hochmuth R. M. A sensitive measure of surface stress in the resting neutrophil. Biophys J. 1992 Jun;61(6):1664–1670. doi: 10.1016/S0006-3495(92)81970-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needham D., Nunn R. S. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J. 1990 Oct;58(4):997–1009. doi: 10.1016/S0006-3495(90)82444-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raucher D., Sheetz M. P. Characteristics of a membrane reservoir buffering membrane tension. Biophys J. 1999 Oct;77(4):1992–2002. doi: 10.1016/S0006-3495(99)77040-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid-Schönbein G. W., Kosawada T., Skalak R., Chien S. Membrane model of endothelial cells and leukocytes. A proposal for the origin of a cortical stress. J Biomech Eng. 1995 May;117(2):171–178. doi: 10.1115/1.2795999. [DOI] [PubMed] [Google Scholar]
- Shao J. Y., Hochmuth R. M. Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Biophys J. 1996 Nov;71(5):2892–2901. doi: 10.1016/S0006-3495(96)79486-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waugh R. E., Hochmuth R. M. Mechanical equilibrium of thick, hollow, liquid membrane cylinders. Biophys J. 1987 Sep;52(3):391–400. doi: 10.1016/S0006-3495(87)83227-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waugh R. E., Song J., Svetina S., Zeks B. Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. Biophys J. 1992 Apr;61(4):974–982. doi: 10.1016/S0006-3495(92)81904-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waugh R. E. Surface viscosity measurements from large bilayer vesicle tether formation. I. Analysis. Biophys J. 1982 Apr;38(1):19–27. doi: 10.1016/S0006-3495(82)84526-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waugh R., Evans E. A. Thermoelasticity of red blood cell membrane. Biophys J. 1979 Apr;26(1):115–131. doi: 10.1016/S0006-3495(79)85239-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhelev D. V., Hochmuth R. M. Mechanically stimulated cytoskeleton rearrangement and cortical contraction in human neutrophils. Biophys J. 1995 May;68(5):2004–2014. doi: 10.1016/S0006-3495(95)80377-2. [DOI] [PMC free article] [PubMed] [Google Scholar]