Abstract
The skeleton adapts to its mechanical usage, although at the cellular level, the distribution and magnitude of strains generated and their detection are ill-understood. The magnitude and nature of the strains to which cells respond were investigated using an atomic force microscope (AFM) as a microindentor. A confocal microscope linked to the setup enabled analysis of cellular responses. Two different cell response pathways were identified: one, consequent upon contact, depended on activation of stretch-activated ion channels; the second, following stress relaxation, required an intact microtubular cytoskeleton. The cellular responses could be modulated by selectively disrupting cytoskeletal components thought to be involved in the transduction of mechanical stimuli. The F-actin cytoskeleton was not required for responses to mechanical strain, whereas the microtubular and vimentin networks were. Treatments that reduced membrane tension, or its transmission, selectively reduced contact reactions. Immunostaining of the cell cytoskeleton was used to interpret the results of the cytoskeletal disruption studies. We provide an estimate of the cellular strain magnitude needed to elicit intracellular calcium responses and propose a model that links single cell responses to whole bone adaptation. This technique may help to understand adaptation to mechanical usage in other organs.
Full Text
The Full Text of this article is available as a PDF (945.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi M., Iwasa K. H. Effect of diamide on force generation and axial stiffness of the cochlear outer hair cell. Biophys J. 1997 Nov;73(5):2809–2818. doi: 10.1016/S0006-3495(97)78310-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ajubi N. E., Klein-Nulend J., Alblas M. J., Burger E. H., Nijweide P. J. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol. 1999 Jan;276(1 Pt 1):E171–E178. doi: 10.1152/ajpendo.1999.276.1.E171. [DOI] [PubMed] [Google Scholar]
- Banes A. J., Tsuzaki M., Yamamoto J., Fischer T., Brigman B., Brown T., Miller L. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol. 1995 Jul-Aug;73(7-8):349–365. doi: 10.1139/o95-043. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000 Oct;1(1):11–21. doi: 10.1038/35036035. [DOI] [PubMed] [Google Scholar]
- Brown T. D., Bottlang M., Pedersen D. R., Banes A. J. Loading paradigms--intentional and unintentional--for cell culture mechanostimulus. Am J Med Sci. 1998 Sep;316(3):162–168. doi: 10.1097/00000441-199809000-00003. [DOI] [PubMed] [Google Scholar]
- Burr D. B., Milgrom C., Fyhrie D., Forwood M., Nyska M., Finestone A., Hoshaw S., Saiag E., Simkin A. In vivo measurement of human tibial strains during vigorous activity. Bone. 1996 May;18(5):405–410. doi: 10.1016/8756-3282(96)00028-2. [DOI] [PubMed] [Google Scholar]
- Charras G. T., Lehenkari P. P., Horton M. A. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy. 2001 Jan;86(1-2):85–95. doi: 10.1016/s0304-3991(00)00076-0. [DOI] [PubMed] [Google Scholar]
- Cowin S. C., Moss-Salentijn L., Moss M. L. Candidates for the mechanosensory system in bone. J Biomech Eng. 1991 May;113(2):191–197. doi: 10.1115/1.2891234. [DOI] [PubMed] [Google Scholar]
- Dolmetsch R. E., Xu K., Lewis R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998 Apr 30;392(6679):933–936. doi: 10.1038/31960. [DOI] [PubMed] [Google Scholar]
- Fermor B., Gundle R., Evans M., Emerton M., Pocock A., Murray D. Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone. 1998 Jun;22(6):637–643. doi: 10.1016/s8756-3282(98)00047-7. [DOI] [PubMed] [Google Scholar]
- Fritton S. P., McLeod K. J., Rubin C. T. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech. 2000 Mar;33(3):317–325. doi: 10.1016/s0021-9290(99)00210-9. [DOI] [PubMed] [Google Scholar]
- Guilak F. Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J Microsc. 1994 Mar;173(Pt 3):245–256. doi: 10.1111/j.1365-2818.1994.tb03447.x. [DOI] [PubMed] [Google Scholar]
- Haydon P. G., Lartius R., Parpura V., Marchese-Ragona S. P. Membrane deformation of living glial cells using atomic force microscopy. J Microsc. 1996 May;182(Pt 2):114–120. doi: 10.1046/j.1365-2818.1996.141423.x. [DOI] [PubMed] [Google Scholar]
- Herbertson A., Aubin J. E. Dexamethasone alters the subpopulation make-up of rat bone marrow stromal cell cultures. J Bone Miner Res. 1995 Feb;10(2):285–294. doi: 10.1002/jbmr.5650100216. [DOI] [PubMed] [Google Scholar]
- Hollister S. J., Brennan J. M., Kikuchi N. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech. 1994 Apr;27(4):433–444. doi: 10.1016/0021-9290(94)90019-1. [DOI] [PubMed] [Google Scholar]
- Hung C. T., Allen F. D., Pollack S. R., Brighton C. T. Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J Biomech. 1996 Nov;29(11):1411–1417. doi: 10.1016/0021-9290(96)84536-2. [DOI] [PubMed] [Google Scholar]
- Ingber D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci. 1993 Mar;104(Pt 3):613–627. doi: 10.1242/jcs.104.3.613. [DOI] [PubMed] [Google Scholar]
- Janmey P. A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev. 1998 Jul;78(3):763–781. doi: 10.1152/physrev.1998.78.3.763. [DOI] [PubMed] [Google Scholar]
- Jones D. B., Nolte H., Scholübbers J. G., Turner E., Veltel D. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials. 1991 Mar;12(2):101–110. doi: 10.1016/0142-9612(91)90186-e. [DOI] [PubMed] [Google Scholar]
- Jorgensen N. R., Geist S. T., Civitelli R., Steinberg T. H. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol. 1997 Oct 20;139(2):497–506. doi: 10.1083/jcb.139.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaspar D., Seidl W., Neidlinger-Wilke C., Ignatius A., Claes L. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech. 2000 Jan;33(1):45–51. doi: 10.1016/s0021-9290(99)00171-2. [DOI] [PubMed] [Google Scholar]
- Kirber M. T., Guerrero-Hernández A., Bowman D. S., Fogarty K. E., Tuft R. A., Singer J. J., Fay F. S. Multiple pathways responsible for the stretch-induced increase in Ca2+ concentration in toad stomach smooth muscle cells. J Physiol. 2000 Apr 1;524(Pt 1):3–17. doi: 10.1111/j.1469-7793.2000.t01-4-00003.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ko K. S., McCulloch C. A. Partners in protection: interdependence of cytoskeleton and plasma membrane in adaptations to applied forces. J Membr Biol. 2000 Mar 15;174(2):85–95. doi: 10.1007/s002320001034. [DOI] [PubMed] [Google Scholar]
- Lanyon L. E. Control of bone architecture by functional load bearing. J Bone Miner Res. 1992 Dec;7 (Suppl 2):S369–S375. doi: 10.1002/jbmr.5650071403. [DOI] [PubMed] [Google Scholar]
- Lanyon L. E. Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int. 1993;53 (Suppl 1):S102–S107. doi: 10.1007/BF01673415. [DOI] [PubMed] [Google Scholar]
- Lanyon L. E., Smith R. N. Measurements of bone strain in the walking animal. Res Vet Sci. 1969 Jan;10(1):93–94. [PubMed] [Google Scholar]
- Lehenkari P. P., Charras G. T., Nykänen A., Horton M. A. Adapting atomic force microscopy for cell biology. Ultramicroscopy. 2000 Feb;82(1-4):289–295. doi: 10.1016/s0304-3991(99)00138-2. [DOI] [PubMed] [Google Scholar]
- Li W., Llopis J., Whitney M., Zlokarnik G., Tsien R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature. 1998 Apr 30;392(6679):936–941. doi: 10.1038/31965. [DOI] [PubMed] [Google Scholar]
- Malek A. M., Izumo S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci. 1996 Apr;109(Pt 4):713–726. doi: 10.1242/jcs.109.4.713. [DOI] [PubMed] [Google Scholar]
- Maniotis A. J., Chen C. S., Ingber D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):849–854. doi: 10.1073/pnas.94.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meazzini M. C., Toma C. D., Schaffer J. L., Gray M. L., Gerstenfeld L. C. Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. J Orthop Res. 1998 Mar;16(2):170–180. doi: 10.1002/jor.1100160204. [DOI] [PubMed] [Google Scholar]
- Nesbitt S. A., Horton M. A. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science. 1997 Apr 11;276(5310):266–269. doi: 10.1126/science.276.5310.266. [DOI] [PubMed] [Google Scholar]
- Niggel J., Sigurdson W., Sachs F. Mechanically induced calcium movements in astrocytes, bovine aortic endothelial cells and C6 glioma cells. J Membr Biol. 2000 Mar 15;174(2):121–134. doi: 10.1007/s002320001037. [DOI] [PubMed] [Google Scholar]
- Radmacher M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng Med Biol Mag. 1997 Mar-Apr;16(2):47–57. doi: 10.1109/51.582176. [DOI] [PubMed] [Google Scholar]
- Raucher D., Sheetz M. P. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol. 2000 Jan 10;148(1):127–136. doi: 10.1083/jcb.148.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotsch C., Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000 Jan;78(1):520–535. doi: 10.1016/S0006-3495(00)76614-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin C. T., Lanyon L. E. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol. 1984 Mar 21;107(2):321–327. doi: 10.1016/s0022-5193(84)80031-4. [DOI] [PubMed] [Google Scholar]
- Rubin C. T., Lanyon L. E. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984 Mar;66(3):397–402. [PubMed] [Google Scholar]
- Sachs F., Morris C. E. Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol. 1998;132:1–77. doi: 10.1007/BFb0004985. [DOI] [PubMed] [Google Scholar]
- Sokabe M., Sachs F., Jing Z. Q. Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J. 1991 Mar;59(3):722–728. doi: 10.1016/S0006-3495(91)82285-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toma C. D., Ashkar S., Gray M. L., Schaffer J. L., Gerstenfeld L. C. Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res. 1997 Oct;12(10):1626–1636. doi: 10.1359/jbmr.1997.12.10.1626. [DOI] [PubMed] [Google Scholar]
- Van Rietbergen B., Müller R., Ulrich D., Rüegsegger P., Huiskes R. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech. 1999 Apr;32(4):443–451. doi: 10.1016/s0021-9290(99)00024-x. [DOI] [PubMed] [Google Scholar]
- Wang N. Mechanical interactions among cytoskeletal filaments. Hypertension. 1998 Jul;32(1):162–165. doi: 10.1161/01.hyp.32.1.162. [DOI] [PubMed] [Google Scholar]
- Wozniak M., Fausto A., Carron C. P., Meyer D. M., Hruska K. A. Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression. J Bone Miner Res. 2000 Sep;15(9):1731–1745. doi: 10.1359/jbmr.2000.15.9.1731. [DOI] [PubMed] [Google Scholar]
- Wu Z., Wong K., Glogauer M., Ellen R. P., McCulloch C. A. Regulation of stretch-activated intracellular calcium transients by actin filaments. Biochem Biophys Res Commun. 1999 Aug 2;261(2):419–425. doi: 10.1006/bbrc.1999.1057. [DOI] [PubMed] [Google Scholar]
- Xia S. L., Ferrier J. Propagation of a calcium pulse between osteoblastic cells. Biochem Biophys Res Commun. 1992 Aug 14;186(3):1212–1219. doi: 10.1016/s0006-291x(05)81535-9. [DOI] [PubMed] [Google Scholar]
- Yellowley C. E., Li Z., Zhou Z., Jacobs C. R., Donahue H. J. Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res. 2000 Feb;15(2):209–217. doi: 10.1359/jbmr.2000.15.2.209. [DOI] [PubMed] [Google Scholar]
- You J., Yellowley C. E., Donahue H. J., Zhang Y., Chen Q., Jacobs C. R. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng. 2000 Aug;122(4):387–393. doi: 10.1115/1.1287161. [DOI] [PubMed] [Google Scholar]
- Zaman G., Suswillo R. F., Cheng M. Z., Tavares I. A., Lanyon L. E. Early responses to dynamic strain change and prostaglandins in bone-derived cells in culture. J Bone Miner Res. 1997 May;12(5):769–777. doi: 10.1359/jbmr.1997.12.5.769. [DOI] [PubMed] [Google Scholar]