Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):2982–2994. doi: 10.1016/S0006-3495(02)75639-7

Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions.

Iustin V Tabarean 1, Catherine E Morris 1
PMCID: PMC1302086  PMID: 12023221

Abstract

At low P(open)(V) Shaker exhibits pronounced stretch-activation. Possible explanations for Shaker's sensitivity to tension include 1) Shaker channels are sufficiently distensible that stretch produces novel channel states and 2) Shaker channels expand in the plane of the membrane during voltage gating. For channels expressed in oocytes, we compared effects of patch stretch on Shaker and mutants that retain their voltage-gating ability but activate sluggishly because all or most of the S3-S4 linker has been deleted. Deletants had 10, 5, or 0 amino acid (aa) linkers, whereas wild-type is 31 aa. In deletants, though activation is exceptionally slow, slow inactivation is exceptionally quick; the resulting kinetic match was a bonus that allowed effects of stretch to be followed simultaneously in both processes. With the intact linker, an approximately 3 orders of magnitude mismatch in the two processes makes this impracticable. Standard stretch stimuli increased the rates and extent of activation by about the same degree in wild type and deletants, with effects especially pronounced near the foot of G(V). In deletants (where slow inactivation is strongly coupled to activation) stretch also accelerated slow inactivation. Maximum conductances were unaffected by stretch in all variants. In ramp clamp dose experiments, near-lytic patch stretch acted, for all variants, like a approximately 10 mV hyperpolarizing shift. These results suggested that, whether basal rates were high (wild type) or low (deletants), stretch acted by facilitating voltage-dependent activation. Channel activity was therefore simulated with/without "tension," tension being simulated via rate changes at voltage-dependent closed-closed transitions that might involve in-plane expansion (explanation 2). Simulated Delta P(open) arising from approximately 2 kT of "mechanical gating energy" mimicked experimental effects seen with comfortably sub-lytic stretch.

Full Text

The Full Text of this article is available as a PDF (308.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev. 2000 Apr;80(2):555–592. doi: 10.1152/physrev.2000.80.2.555. [DOI] [PubMed] [Google Scholar]
  2. Bourque CW, Chakfe Y. Does a stretch-inactivated cation channel integrate osmotic and peptidergic signals? Nat Neurosci. 2000 Sep;3(9):847–848. doi: 10.1038/78732. [DOI] [PubMed] [Google Scholar]
  3. Conti F., Fioravanti R., Segal J. R., Stühmer W. Pressure dependence of the potassium currents of squid giant axon. J Membr Biol. 1982;69(1):35–40. doi: 10.1007/BF01871239. [DOI] [PubMed] [Google Scholar]
  4. Conti F., Fioravanti R., Segal J. R., Stühmer W. Pressure dependence of the sodium currents of squid giant axon. J Membr Biol. 1982;69(1):23–34. doi: 10.1007/BF01871238. [DOI] [PubMed] [Google Scholar]
  5. Conti F., Inoue I., Kukita F., Stühmer W. Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J. 1984;11(2):137–147. doi: 10.1007/BF00276629. [DOI] [PubMed] [Google Scholar]
  6. Elinder F., Männikkö R., Larsson H. P. S4 charges move close to residues in the pore domain during activation in a K channel. J Gen Physiol. 2001 Jul;118(1):1–10. doi: 10.1085/jgp.118.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ermakov Y. A., Averbakh A. Z., Yusipovich A. I., Sukharev S. Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Biophys J. 2001 Apr;80(4):1851–1862. doi: 10.1016/S0006-3495(01)76155-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franco A., Jr, Lansman J. B. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature. 1990 Apr 12;344(6267):670–673. doi: 10.1038/344670a0. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez C., Rosenman E., Bezanilla F., Alvarez O., Latorre R. Modulation of the Shaker K(+) channel gating kinetics by the S3-S4 linker. J Gen Physiol. 2000 Feb;115(2):193–208. doi: 10.1085/jgp.115.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gonzalez C., Rosenman E., Bezanilla F., Alvarez O., Latorre R. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3-S4 linker. Proc Natl Acad Sci U S A. 2001 Aug 7;98(17):9617–9623. doi: 10.1073/pnas.171306298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gu C. X., Juranka P. F., Morris C. E. Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J. 2001 Jun;80(6):2678–2693. doi: 10.1016/S0006-3495(01)76237-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamill O. P., Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev. 2001 Apr;81(2):685–740. doi: 10.1152/physrev.2001.81.2.685. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., McBride D. W., Jr Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annu Rev Physiol. 1997;59:621–631. doi: 10.1146/annurev.physiol.59.1.621. [DOI] [PubMed] [Google Scholar]
  15. Holm A. N., Rich A., Sarr M. G., Farrugia G. Whole cell current and membrane potential regulation by a human smooth muscle mechanosensitive calcium channel. Am J Physiol Gastrointest Liver Physiol. 2000 Dec;279(6):G1155–G1161. doi: 10.1152/ajpgi.2000.279.6.G1155. [DOI] [PubMed] [Google Scholar]
  16. Hong K. H., Miller C. The lipid-protein interface of a Shaker K(+) channel. J Gen Physiol. 2000 Jan;115(1):51–58. doi: 10.1085/jgp.115.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ji S., John S. A., Lu Y., Weiss J. N. Mechanosensitivity of the cardiac muscarinic potassium channel. A novel property conferred by Kir3.4 subunit. J Biol Chem. 1998 Jan 16;273(3):1324–1328. doi: 10.1074/jbc.273.3.1324. [DOI] [PubMed] [Google Scholar]
  18. Langton P. D. Calcium channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol. 1993 Nov;471:1–11. doi: 10.1113/jphysiol.1993.sp019887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li M., Unwin N., Stauffer K. A., Jan Y. N., Jan L. Y. Images of purified Shaker potassium channels. Curr Biol. 1994 Feb 1;4(2):110–115. doi: 10.1016/s0960-9822(94)00026-6. [DOI] [PubMed] [Google Scholar]
  20. Loots E., Isacoff E. Y. Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):377–389. doi: 10.1085/jgp.112.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martens J. R., Navarro-Polanco R., Coppock E. A., Nishiyama A., Parshley L., Grobaski T. D., Tamkun M. M. Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem. 2000 Mar 17;275(11):7443–7446. doi: 10.1074/jbc.275.11.7443. [DOI] [PubMed] [Google Scholar]
  22. Meyer R., Heinemann S. H. Temperature and pressure dependence of Shaker K+ channel N- and C-type inactivation. Eur Biophys J. 1997;26(6):433–445. doi: 10.1007/s002490050098. [DOI] [PubMed] [Google Scholar]
  23. Monks S. A., Needleman D. J., Miller C. Helical structure and packing orientation of the S2 segment in the Shaker K+ channel. J Gen Physiol. 1999 Mar;113(3):415–423. doi: 10.1085/jgp.113.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morris C. E., Homann U. Cell surface area regulation and membrane tension. J Membr Biol. 2001 Jan 15;179(2):79–102. doi: 10.1007/s002320010040. [DOI] [PubMed] [Google Scholar]
  25. Morris C. E. Mechanoprotection of the plasma membrane in neurons and other non-erythroid cells by the spectrin-based membrane skeleton. Cell Mol Biol Lett. 2001;6(3):703–720. [PubMed] [Google Scholar]
  26. Morris C. E., Sigurdson W. J. Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science. 1989 Feb 10;243(4892):807–809. doi: 10.1126/science.2536958. [DOI] [PubMed] [Google Scholar]
  27. Rodríguez B. M., Sigg D., Bezanilla F. Voltage gating of Shaker K+ channels. The effect of temperature on ionic and gating currents. J Gen Physiol. 1998 Aug;112(2):223–242. doi: 10.1085/jgp.112.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sachs F. Baroreceptor mechanisms at the cellular level. Fed Proc. 1987 Jan;46(1):12–16. [PubMed] [Google Scholar]
  29. Sachs F., Morris C. E. Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol. 1998;132:1–77. doi: 10.1007/BFb0004985. [DOI] [PubMed] [Google Scholar]
  30. Shcherbatko A., Ono F., Mandel G., Brehm P. Voltage-dependent sodium channel function is regulated through membrane mechanics. Biophys J. 1999 Oct;77(4):1945–1959. doi: 10.1016/S0006-3495(99)77036-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Small D. L., Morris C. E. Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am J Physiol. 1994 Aug;267(2 Pt 1):C598–C606. doi: 10.1152/ajpcell.1994.267.2.C598. [DOI] [PubMed] [Google Scholar]
  32. Smith-Maxwell C. J., Ledwell J. L., Aldrich R. W. Role of the S4 in cooperativity of voltage-dependent potassium channel activation. J Gen Physiol. 1998 Mar;111(3):399–420. doi: 10.1085/jgp.111.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith-Maxwell C. J., Ledwell J. L., Aldrich R. W. Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. J Gen Physiol. 1998 Mar;111(3):421–439. doi: 10.1085/jgp.111.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sukharev S., Durell S. R., Guy H. R. Structural models of the MscL gating mechanism. Biophys J. 2001 Aug;81(2):917–936. doi: 10.1016/S0006-3495(01)75751-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Suzuki M., Sato J., Kutsuwada K., Ooki G., Imai M. Cloning of a stretch-inhibitable nonselective cation channel. J Biol Chem. 1999 Mar 5;274(10):6330–6335. doi: 10.1074/jbc.274.10.6330. [DOI] [PubMed] [Google Scholar]
  36. Sørensen J. B., Cha A., Latorre R., Rosenman E., Bezanilla F. Deletion of the S3-S4 linker in the Shaker potassium channel reveals two quenching groups near the outside of S4. J Gen Physiol. 2000 Feb;115(2):209–222. doi: 10.1085/jgp.115.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tabarean I. V., Juranka P., Morris C. E. Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophys J. 1999 Aug;77(2):758–774. doi: 10.1016/S0006-3495(99)76930-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yang X. C., Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989 Feb 24;243(4894 Pt 1):1068–1071. doi: 10.1126/science.2466333. [DOI] [PubMed] [Google Scholar]
  39. Yellen G. The moving parts of voltage-gated ion channels. Q Rev Biophys. 1998 Aug;31(3):239–295. doi: 10.1017/s0033583598003448. [DOI] [PubMed] [Google Scholar]
  40. Yoshimura K., Batiza A., Kung C. Chemically charging the pore constriction opens the mechanosensitive channel MscL. Biophys J. 2001 May;80(5):2198–2206. doi: 10.1016/S0006-3495(01)76192-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhang Y., Hamill O. P. On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol. 2000 Feb 15;523(Pt 1):101–115. doi: 10.1111/j.1469-7793.2000.00101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zimmerberg J., Bezanilla F., Parsegian V. A. Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon. Biophys J. 1990 May;57(5):1049–1064. doi: 10.1016/S0006-3495(90)82623-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES