Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):2995–3002. doi: 10.1016/S0006-3495(02)75640-3

Three-dimensional structure of the S4-S5 segment of the Shaker potassium channel.

Oliver Ohlenschläger 1, Hironobu Hojo 1, Ramadurai Ramachandran 1, Matthias Görlach 1, Parvez I Haris 1
PMCID: PMC1302087  PMID: 12023222

Abstract

The propagation of action potentials during neuronal signal transduction in phospholipid membranes is mediated by ion channels, a diverse group of membrane proteins. The S4-S5 linker peptide (S4-S5), that connects the S4 and S5 transmembrane segments of voltage-gated potassium channels is an important region of the Shaker ion-channel protein. Despite its importance, very little is known about its structure. Here we provide evidence for an amphipathic alpha-helical conformation of a synthetic S4-S5 peptide of the voltage-gated Drosophila melanogaster Shaker potassium channel in water/trifluoroethanol and in aqueous phospholipid micelles. The three-dimensional solution structures of the S4-S5 peptide were obtained by high-resolution nuclear magnetic resonance spectroscopy and distance-geometry/simulated-annealing calculations. The detailed structural features are discussed with respect to model studies and available mutagenesis data on the mechanism and selectivity of the potassium channel.

Full Text

The Full Text of this article is available as a PDF (255.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antz C., Bauer T., Kalbacher H., Frank R., Covarrubias M., Kalbitzer H. R., Ruppersberg J. P., Baukrowitz T., Fakler B. Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate. Nat Struct Biol. 1999 Feb;6(2):146–150. doi: 10.1038/5833. [DOI] [PubMed] [Google Scholar]
  2. Antz C., Geyer M., Fakler B., Schott M. K., Guy H. R., Frank R., Ruppersberg J. P., Kalbitzer H. R. NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature. 1997 Jan 16;385(6613):272–275. doi: 10.1038/385272a0. [DOI] [PubMed] [Google Scholar]
  3. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cha A., Snyder G. E., Selvin P. R., Bezanilla F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature. 1999 Dec 16;402(6763):809–813. doi: 10.1038/45552. [DOI] [PubMed] [Google Scholar]
  5. Clapham D. E. More pieces of the K+ ion channel puzzle. Nat Struct Biol. 1999 Sep;6(9):807–810. doi: 10.1038/12261. [DOI] [PubMed] [Google Scholar]
  6. Doak D. G., Mulvey D., Kawaguchi K., Villalain J., Campbell I. D. Structural studies of synthetic peptides dissected from the voltage-gated sodium channel. J Mol Biol. 1996 May 17;258(4):672–687. doi: 10.1006/jmbi.1996.0278. [DOI] [PubMed] [Google Scholar]
  7. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  8. Durell S. R., Hao Y., Guy H. R. Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations. J Struct Biol. 1998;121(2):263–284. doi: 10.1006/jsbi.1998.3962. [DOI] [PubMed] [Google Scholar]
  9. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  10. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  11. Haris P. I., Ramesh B., Brazier S., Chapman D. The conformational analysis of a synthetic S4 peptide corresponding to a voltage-gated potassium ion channel protein. FEBS Lett. 1994 Aug 8;349(3):371–374. doi: 10.1016/0014-5793(94)00704-7. [DOI] [PubMed] [Google Scholar]
  12. Haris P. I., Ramesh B., Sansom M. S., Kerr I. D., Srai K. S., Chapman D. Studies of the pore-forming domain of a voltage-gated potassium channel protein. Protein Eng. 1994 Feb;7(2):255–262. doi: 10.1093/protein/7.2.255. [DOI] [PubMed] [Google Scholar]
  13. Holmgren M., Liu Y., Xu Y., Yellen G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology. 1996;35(7):797–804. doi: 10.1016/0028-3908(96)00129-3. [DOI] [PubMed] [Google Scholar]
  14. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  15. Isacoff E. Y., Jan Y. N., Jan L. Y. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature. 1991 Sep 5;353(6339):86–90. doi: 10.1038/353086a0. [DOI] [PubMed] [Google Scholar]
  16. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  17. Kreusch A., Pfaffinger P. J., Stevens C. F., Choe S. Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature. 1998 Apr 30;392(6679):945–948. doi: 10.1038/31978. [DOI] [PubMed] [Google Scholar]
  18. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  19. Larsson H. P., Baker O. S., Dhillon D. S., Isacoff E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron. 1996 Feb;16(2):387–397. doi: 10.1016/s0896-6273(00)80056-2. [DOI] [PubMed] [Google Scholar]
  20. Liu Y., Holmgren M., Jurman M. E., Yellen G. Gated access to the pore of a voltage-dependent K+ channel. Neuron. 1997 Jul;19(1):175–184. doi: 10.1016/s0896-6273(00)80357-8. [DOI] [PubMed] [Google Scholar]
  21. Lopez G. A., Jan Y. N., Jan L. Y. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore. Nature. 1994 Jan 13;367(6459):179–182. doi: 10.1038/367179a0. [DOI] [PubMed] [Google Scholar]
  22. Luginbühl P., Güntert P., Billeter M., Wüthrich K. The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules. J Biomol NMR. 1996 Sep;8(2):136–146. doi: 10.1007/BF00211160. [DOI] [PubMed] [Google Scholar]
  23. McCormack K., Tanouye M. A., Iverson L. E., Lin J. W., Ramaswami M., McCormack T., Campanelli J. T., Mathew M. K., Rudy B. A role for hydrophobic residues in the voltage-dependent gating of Shaker K+ channels. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2931–2935. doi: 10.1073/pnas.88.7.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moczydlowski E. Chemical basis for alkali cation selectivity in potassium-channel proteins. Chem Biol. 1998 Nov;5(11):R291–R301. doi: 10.1016/s1074-5521(98)90288-5. [DOI] [PubMed] [Google Scholar]
  25. Montal M. Molecular mimicry in channel-protein structure. Curr Opin Struct Biol. 1995 Aug;5(4):501–506. doi: 10.1016/0959-440x(95)80035-2. [DOI] [PubMed] [Google Scholar]
  26. Mulvey D., King G. F., Cooke R. M., Doak D. G., Harvey T. S., Campbell I. D. High resolution 1H NMR study of the solution structure of the S4 segment of the sodium channel protein. FEBS Lett. 1989 Oct 23;257(1):113–117. doi: 10.1016/0014-5793(89)81799-5. [DOI] [PubMed] [Google Scholar]
  27. Murrell-Lagnado R. D., Aldrich R. W. Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides. J Gen Physiol. 1993 Dec;102(6):949–975. doi: 10.1085/jgp.102.6.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
  29. Ohlenschläger O., Ramachandran R., Gührs K. H., Schlott B., Brown L. R. Nuclear magnetic resonance solution structure of the plasminogen-activator protein staphylokinase. Biochemistry. 1998 Jul 28;37(30):10635–10642. doi: 10.1021/bi980673i. [DOI] [PubMed] [Google Scholar]
  30. Pongs O. Molecular biology of voltage-dependent potassium channels. Physiol Rev. 1992 Oct;72(4 Suppl):S69–S88. doi: 10.1152/physrev.1992.72.suppl_4.S69. [DOI] [PubMed] [Google Scholar]
  31. Sansom M. S., Shrivastava I. H., Ranatunga K. M., Smith G. R. Simulations of ion channels--watching ions and water move. Trends Biochem Sci. 2000 Aug;25(8):368–374. doi: 10.1016/s0968-0004(00)01613-3. [DOI] [PubMed] [Google Scholar]
  32. Shindo K., Takahashi H., Shinozaki K., Kami K., Anzai K., Lee S., Aoyagi H., Kirino Y., Shimada I. Solution structure of micelle-bound H5 peptide (427-452): a primary structure corresponding to the pore forming region of the voltage dependent potassium channel. Biochim Biophys Acta. 2001 Feb 9;1545(1-2):153–159. doi: 10.1016/s0167-4838(00)00273-9. [DOI] [PubMed] [Google Scholar]
  33. Stoldt M., Wöhnert J., Ohlenschläger O., Görlach M., Brown L. R. The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition. EMBO J. 1999 Nov 15;18(22):6508–6521. doi: 10.1093/emboj/18.22.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  35. Wissmann R., Baukrowitz T., Kalbacher H., Kalbitzer H. R., Ruppersberg J. P., Pongs O., Antz C., Fakler B. NMR structure and functional characteristics of the hydrophilic N terminus of the potassium channel beta-subunit Kvbeta1.1. J Biol Chem. 1999 Dec 10;274(50):35521–35525. doi: 10.1074/jbc.274.50.35521. [DOI] [PubMed] [Google Scholar]
  36. Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]
  37. Zagotta W. N., Hoshi T., Aldrich R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 1990 Oct 26;250(4980):568–571. doi: 10.1126/science.2122520. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES