Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):3003–3011. doi: 10.1016/S0006-3495(02)75641-5

Inhibition of single Shaker K channels by kappa-conotoxin-PVIIA.

David Naranjo 1
PMCID: PMC1302088  PMID: 12023223

Abstract

kappa-Conotoxin-PVIIA (kappa-PVIIA) is a 27-residue basic (+4) peptide from the venom of the predator snail Conus purpurascens. A single kappa-PVIIA molecule interrupts ion conduction by binding to the external mouth of Shaker K channels. The blockade of Shaker by kappa-PVIIA was studied at the single channel level in membrane patches from Xenopus oocytes. The amplitudes of blocked and closed events were undistinguishable, suggesting that the toxin interrupts ion conduction completely. Between -20 and 40 mV kappa-PVIIA increased the latency to the first opening by one order of magnitude in a concentration-independent fashion. Because kappa-PVIIA has higher affinity for the closed channels at high enough concentration to block >90% of the resting channels, the dissociation rate could be estimated from the analysis of the first latency. At 0 mV, the dissociation rate was 20 s(-1) and had an effective valence of 0.64. The apparent closing rate increased linearly with [kappa-PVIIA] indicating an association rate of 56 microM(-1) s(-1). The toxin did not modify the fraction of null traces. This result suggests that the structural rearrangements in the external mouth contributing to the slow inactivation preserve the main geometrical features of the toxin-receptor interaction.

Full Text

The Full Text of this article is available as a PDF (249.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Villarroel A., Eisenman G. Calculation of ion currents from energy profiles and energy profiles from ion currents in multibarrier, multisite, multioccupancy channel model. Methods Enzymol. 1992;207:816–854. doi: 10.1016/0076-6879(92)07058-v. [DOI] [PubMed] [Google Scholar]
  2. Bontems F., Gilquin B., Roumestand C., Ménez A., Toma F. Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications. Biochemistry. 1992 Sep 1;31(34):7756–7764. doi: 10.1021/bi00149a003. [DOI] [PubMed] [Google Scholar]
  3. Crouzy S., Bernèche S., Roux B. Extracellular blockade of K(+) channels by TEA: results from molecular dynamics simulations of the KcsA channel. J Gen Physiol. 2001 Aug;118(2):207–218. doi: 10.1085/jgp.118.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dauplais M., Lecoq A., Song J., Cotton J., Jamin N., Gilquin B., Roumestand C., Vita C., de Medeiros C. L., Rowan E. G. On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem. 1997 Feb 14;272(7):4302–4309. doi: 10.1074/jbc.272.7.4302. [DOI] [PubMed] [Google Scholar]
  5. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  6. García E., Scanlon M., Naranjo D. A marine snail neurotoxin shares with scorpion toxins a convergent mechanism of blockade on the pore of voltage-gated K channels. J Gen Physiol. 1999 Jul;114(1):141–157. doi: 10.1085/jgp.114.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldstein S. A., Miller C. Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J. 1993 Oct;65(4):1613–1619. doi: 10.1016/S0006-3495(93)81200-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein S. A., Pheasant D. J., Miller C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron. 1994 Jun;12(6):1377–1388. doi: 10.1016/0896-6273(94)90452-9. [DOI] [PubMed] [Google Scholar]
  9. Gross A., MacKinnon R. Agitoxin footprinting the shaker potassium channel pore. Neuron. 1996 Feb;16(2):399–406. doi: 10.1016/s0896-6273(00)80057-4. [DOI] [PubMed] [Google Scholar]
  10. Horn R., Patlak J., Stevens C. F. Sodium channels need not open before they inactivate. Nature. 1981 Jun 4;291(5814):426–427. doi: 10.1038/291426a0. [DOI] [PubMed] [Google Scholar]
  11. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  12. Hoshi T., Zagotta W. N., Aldrich R. W. Shaker potassium channel gating. I: Transitions near the open state. J Gen Physiol. 1994 Feb;103(2):249–278. doi: 10.1085/jgp.103.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
  14. Imredy J. P., MacKinnon R. Energetic and structural interactions between delta-dendrotoxin and a voltage-gated potassium channel. J Mol Biol. 2000 Mar 10;296(5):1283–1294. doi: 10.1006/jmbi.2000.3522. [DOI] [PubMed] [Google Scholar]
  15. Jacobsen R. B., Koch E. D., Lange-Malecki B., Stocker M., Verhey J., Van Wagoner R. M., Vyazovkina A., Olivera B. M., Terlau H. Single amino acid substitutions in kappa-conotoxin PVIIA disrupt interaction with the shaker K+ channel. J Biol Chem. 2000 Aug 11;275(32):24639–24644. doi: 10.1074/jbc.C900990199. [DOI] [PubMed] [Google Scholar]
  16. Larsson H. P., Elinder F. A conserved glutamate is important for slow inactivation in K+ channels. Neuron. 2000 Sep;27(3):573–583. doi: 10.1016/s0896-6273(00)00067-2. [DOI] [PubMed] [Google Scholar]
  17. Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
  18. López-Barneo J., Hoshi T., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1(1):61–71. [PubMed] [Google Scholar]
  19. MacKinnon R., Miller C. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J Gen Physiol. 1988 Mar;91(3):335–349. doi: 10.1085/jgp.91.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marom S., Levitan I. B. State-dependent inactivation of the Kv3 potassium channel. Biophys J. 1994 Aug;67(2):579–589. doi: 10.1016/S0006-3495(94)80517-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Molina A., Ortega-Sáenz P., Lopez-Barneo J. Pore mutations alter closing and opening kinetics in Shaker K+ channels. J Physiol. 1998 Jun 1;509(Pt 2):327–337. doi: 10.1111/j.1469-7793.1998.327bn.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Naranjo D., Brehm P. Modal shifts in acetylcholine receptor channel gating confer subunit-dependent desensitization. Science. 1993 Jun 18;260(5115):1811–1814. doi: 10.1126/science.8511590. [DOI] [PubMed] [Google Scholar]
  23. Naranjo D., Miller C. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel. Neuron. 1996 Jan;16(1):123–130. doi: 10.1016/s0896-6273(00)80029-x. [DOI] [PubMed] [Google Scholar]
  24. Ogielska E. M., Zagotta W. N., Hoshi T., Heinemann S. H., Haab J., Aldrich R. W. Cooperative subunit interactions in C-type inactivation of K channels. Biophys J. 1995 Dec;69(6):2449–2457. doi: 10.1016/S0006-3495(95)80114-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ortega-Sáenz P., Pardal R., Castellano A., López-Barneo J. Collapse of conductance is prevented by a glutamate residue conserved in voltage-dependent K(+) channels. J Gen Physiol. 2000 Aug;116(2):181–190. doi: 10.1085/jgp.116.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Panyi G., Sheng Z., Deutsch C. C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J. 1995 Sep;69(3):896–903. doi: 10.1016/S0006-3495(95)79963-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Park C. S., Miller C. Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel. Neuron. 1992 Aug;9(2):307–313. doi: 10.1016/0896-6273(92)90169-e. [DOI] [PubMed] [Google Scholar]
  28. Perozo E., Cortes D. M., Cuello L. G. Structural rearrangements underlying K+-channel activation gating. Science. 1999 Jul 2;285(5424):73–78. doi: 10.1126/science.285.5424.73. [DOI] [PubMed] [Google Scholar]
  29. Pérez-Cornejo P. H+ ion modulation of C-type inactivation of Shaker K+ channels. Pflugers Arch. 1999 May;437(6):865–870. doi: 10.1007/s004240050856. [DOI] [PubMed] [Google Scholar]
  30. Ranganathan R., Lewis J. H., MacKinnon R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron. 1996 Jan;16(1):131–139. doi: 10.1016/s0896-6273(00)80030-6. [DOI] [PubMed] [Google Scholar]
  31. Savarin P., Guenneugues M., Gilquin B., Lamthanh H., Gasparini S., Zinn-Justin S., Ménez A. Three-dimensional structure of kappa-conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails. Biochemistry. 1998 Apr 21;37(16):5407–5416. doi: 10.1021/bi9730341. [DOI] [PubMed] [Google Scholar]
  32. Scanlon M. J., Naranjo D., Thomas L., Alewood P. F., Lewis R. J., Craik D. J. Solution structure and proposed binding mechanism of a novel potassium channel toxin kappa-conotoxin PVIIA. Structure. 1997 Dec 15;5(12):1585–1597. doi: 10.1016/s0969-2126(97)00307-9. [DOI] [PubMed] [Google Scholar]
  33. Shon K. J., Stocker M., Terlau H., Stühmer W., Jacobsen R., Walker C., Grilley M., Watkins M., Hillyard D. R., Gray W. R. kappa-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J Biol Chem. 1998 Jan 2;273(1):33–38. doi: 10.1074/jbc.273.1.33. [DOI] [PubMed] [Google Scholar]
  34. Stampe P., Kolmakova-Partensky L., Miller C. Intimations of K+ channel structure from a complete functional map of the molecular surface of charybdotoxin. Biochemistry. 1994 Jan 18;33(2):443–450. doi: 10.1021/bi00168a008. [DOI] [PubMed] [Google Scholar]
  35. Stauffer D. A., Karlin A. Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry. 1994 Jun 7;33(22):6840–6849. doi: 10.1021/bi00188a013. [DOI] [PubMed] [Google Scholar]
  36. Terlau H., Boccaccio A., Olivera B. M., Conti F. The block of Shaker K+ channels by kappa-conotoxin PVIIA is state dependent. J Gen Physiol. 1999 Jul;114(1):125–140. doi: 10.1085/jgp.114.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995 Jan 5;373(6509):37–43. doi: 10.1038/373037a0. [DOI] [PubMed] [Google Scholar]
  38. Unwin P. N., Zampighi G. Structure of the junction between communicating cells. Nature. 1980 Feb 7;283(5747):545–549. doi: 10.1038/283545a0. [DOI] [PubMed] [Google Scholar]
  39. Yellen G., Sodickson D., Chen T. Y., Jurman M. E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J. 1994 Apr;66(4):1068–1075. doi: 10.1016/S0006-3495(94)80888-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES