Abstract
The state of the art technology for the study of ion channels is the patch clamp technique. Ion channels mediate electrical current flow, have crucial roles in cellular physiology, and are important drug targets. The most popular (whole cell) variant of the technique detects the ensemble current over the entire cell membrane. Patch clamping is still a laborious process, requiring a skilled experimenter to micromanipulate a glass pipette under a microscope to record from one cell at a time. Here we report on a planar, microstructured quartz chip for whole cell patch clamp measurements without micromanipulation or visual control. A quartz substrate of 200 microm thickness is perforated by wet etching techniques resulting in apertures with diameters of approximately 1 microm. The apertures replace the tip of glass pipettes commonly used for patch clamp recording. Cells are positioned onto the apertures from suspension by application of suction. Whole cell recordings from different cell types (CHO, N1E-115 neuroblastoma) are performed with microstructured chips studying K(+) channels and voltage gated Ca(2+) channels.
Full Text
The Full Text of this article is available as a PDF (196.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cha A., Snyder G. E., Selvin P. R., Bezanilla F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature. 1999 Dec 16;402(6763):809–813. doi: 10.1038/45552. [DOI] [PubMed] [Google Scholar]
- Deniz A. A., Dahan M., Grunwell J. R., Ha T., Faulhaber A. E., Chemla D. S., Weiss S., Schultz P. G. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3670–3675. doi: 10.1073/pnas.96.7.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fertig N., Meyer C., Blick R. H., Trautmann C., Behrends J. C. Microstructured glass chip for ion-channel electrophysiology. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep 21;64(4 Pt 1):040901–040901. doi: 10.1103/PhysRevE.64.040901. [DOI] [PubMed] [Google Scholar]
- Gimzewski JK, Joachim C. Nanoscale science of single molecules using local probes . Science. 1999 Mar 12;283(5408):1683–1688. doi: 10.1126/science.283.5408.1683. [DOI] [PubMed] [Google Scholar]
- Glauner K. S., Mannuzzu L. M., Gandhi C. S., Isacoff E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature. 1999 Dec 16;402(6763):813–817. doi: 10.1038/45561. [DOI] [PubMed] [Google Scholar]
- González JE, Oades K, Leychkis Y, Harootunian A, Negulescu PA. Cell-based assays and instrumentation for screening ion-channel targets. Drug Discov Today. 1999 Sep;4(9):431–439. doi: 10.1016/s1359-6446(99)01383-5. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hanner M., Schmalhofer W. A., Munujos P., Knaus H. G., Kaczorowski G. J., Garcia M. L. The beta subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2853–2858. doi: 10.1073/pnas.94.7.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howorka S., Cheley S., Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol. 2001 Jul;19(7):636–639. doi: 10.1038/90236. [DOI] [PubMed] [Google Scholar]
- Ide T., Yanagida T. An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. Biochem Biophys Res Commun. 1999 Nov 19;265(2):595–599. doi: 10.1006/bbrc.1999.1720. [DOI] [PubMed] [Google Scholar]
- Levis R. A., Rae J. L. Low-noise patch-clamp techniques. Methods Enzymol. 1998;293:218–266. doi: 10.1016/s0076-6879(98)93017-8. [DOI] [PubMed] [Google Scholar]
- Levis R. A., Rae J. L. The use of quartz patch pipettes for low noise single channel recording. Biophys J. 1993 Oct;65(4):1666–1677. doi: 10.1016/S0006-3495(93)81224-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis A., Radko A., Ben Ami N., Palanker D., Lieberman K. Near-field scanning optical microscopy in cell biology. Trends Cell Biol. 1999 Feb;9(2):70–73. doi: 10.1016/s0962-8924(98)01437-8. [DOI] [PubMed] [Google Scholar]
- Li J., Stein D., McMullan C., Branton D., Aziz M. J., Golovchenko J. A. Ion-beam sculpting at nanometre length scales. Nature. 2001 Jul 12;412(6843):166–169. doi: 10.1038/35084037. [DOI] [PubMed] [Google Scholar]
- Lougheed T., Borisenko V., Hand C. E., Woolley G. A. Fluorescent gramicidin derivatives for single-molecule fluorescence and ion channel measurements. Bioconjug Chem. 2001 Jul-Aug;12(4):594–602. doi: 10.1021/bc010006t. [DOI] [PubMed] [Google Scholar]
- MacDonald A. G., Wraight P. C. Combined spectroscopic and electrical recording techniques in membrane research: prospects for single channel studies. Prog Biophys Mol Biol. 1995;63(1):1–29. doi: 10.1016/0079-6107(94)00007-v. [DOI] [PubMed] [Google Scholar]
- Mannuzzu L. M., Isacoff E. Y. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J Gen Physiol. 2000 Mar;115(3):257–268. doi: 10.1085/jgp.115.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meller A., Nivon L., Brandin E., Golovchenko J., Branton D. Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1079–1084. doi: 10.1073/pnas.97.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moolenaar W. H., Spector I. Ionic currents in cultured mouse neuroblastoma cells under voltage-clamp conditions. J Physiol. 1978 May;278:265–286. doi: 10.1113/jphysiol.1978.sp012303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opsahl L. R., Webb W. W. Lipid-glass adhesion in giga-sealed patch-clamped membranes. Biophys J. 1994 Jan;66(1):75–79. doi: 10.1016/S0006-3495(94)80752-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantoja R., Sigg D., Blunck R., Bezanilla F., Heath J. R. Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. Biophys J. 2001 Oct;81(4):2389–2394. doi: 10.1016/S0006-3495(01)75885-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rae J. L., Levis R. A. Glass technology for patch clamp electrodes. Methods Enzymol. 1992;207:66–92. doi: 10.1016/0076-6879(92)07005-9. [DOI] [PubMed] [Google Scholar]
- Schmidt C, Mayer M, Vogel H. A Chip-Based Biosensor for the Functional Analysis of Single Ion Channels We thank E. Ermanntraut, L. Giovangrandi, T. Wohland, A. Brecht, M. Köhler, C. Bieri, D. Stamou, and R. Hovius for advice. This work was supported by the Swiss National Science Foundation (Priority Program for Biotechnology) and by an interdepartmental grant of the Swiss Federal Institute of Technology Lausanne (EPFL, Project Microtechnique 96). Angew Chem Int Ed Engl. 2000 Sep 1;39(17):3137–3140. doi: 10.1002/1521-3773(20000901)39:17<3137::aid-anie3137>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Schütz G. J., Sonnleitner M., Hinterdorfer P., Schindler H. Single molecule microscopy of biomembranes (review). Mol Membr Biol. 2000 Jan-Mar;17(1):17–29. doi: 10.1080/096876800294452. [DOI] [PubMed] [Google Scholar]
- Selvin P. R. Fluorescence resonance energy transfer. Methods Enzymol. 1995;246:300–334. doi: 10.1016/0076-6879(95)46015-2. [DOI] [PubMed] [Google Scholar]
- Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999 Mar 12;283(5408):1676–1683. doi: 10.1126/science.283.5408.1676. [DOI] [PubMed] [Google Scholar]
- Wonderlin W. F., Finkel A., French R. J. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophys J. 1990 Aug;58(2):289–297. doi: 10.1016/S0006-3495(90)82376-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolley G. A., Wallace B. A. Model ion channels: gramicidin and alamethicin. J Membr Biol. 1992 Aug;129(2):109–136. doi: 10.1007/BF00219508. [DOI] [PubMed] [Google Scholar]
- Xu Jia, Wang Xiaobo, Ensign Brooks, Li Min, Wu Lei, Guia Antonio, Xu Junquan. Ion-channel assay technologies: quo vadis? Drug Discov Today. 2001 Dec 15;6(24):1278–1287. doi: 10.1016/s1359-6446(01)02095-5. [DOI] [PubMed] [Google Scholar]
- Zhang P. C., Keleshian A. M., Sachs F. Voltage-induced membrane movement. Nature. 2001 Sep 27;413(6854):428–432. doi: 10.1038/35096578. [DOI] [PubMed] [Google Scholar]
- Zhou X. B., Schlossmann J., Hofmann F., Ruth P., Korth M. Regulation of stably expressed and native BK channels from human myometrium by cGMP- and cAMP-dependent protein kinase. Pflugers Arch. 1998 Oct;436(5):725–734. doi: 10.1007/s004240050695. [DOI] [PubMed] [Google Scholar]