Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):3063–3071. doi: 10.1016/S0006-3495(02)75647-6

Contribution of energy values to the analysis of global searching molecular dynamics simulations of transmembrane helical bundles.

Jaume Torres 1, John A G Briggs 1, Isaiah T Arkin 1
PMCID: PMC1302094  PMID: 12023229

Abstract

Molecular interactions between transmembrane alpha-helices can be explored using global searching molecular dynamics simulations (GSMDS), a method that produces a group of probable low energy structures. We have shown previously that the correct model in various homooligomers is always located at the bottom of one of various possible energy basins. Unfortunately, the correct model is not necessarily the one with the lowest energy according to the computational protocol, which has resulted in overlooking of this parameter in favor of experimental data. In an attempt to use energetic considerations in the aforementioned analysis, we used global searching molecular dynamics simulations on three homooligomers of different sizes, the structures of which are known. As expected, our results show that even when the conformational space searched includes the correct structure, taking together simulations using both left and right handedness, the correct model does not necessarily have the lowest energy. However, for the models derived from the simulation that uses the correct handedness, the lowest energy model is always at, or very close to, the correct orientation. We hypothesize that this should also be true when simulations are performed using homologous sequences, and consequently lowest energy models with the right handedness should produce a cluster around a certain orientation. In contrast, using the wrong handedness the lowest energy structures for each sequence should appear at many different orientations. The rationale behind this is that, although more than one energy basin may exist, basins that do not contain the correct model will shift or disappear because they will be destabilized by at least one conservative (i.e. silent) mutation, whereas the basin containing the correct model will remain. This not only allows one to point to the possible handedness of the bundle, but can be used to overcome ambiguities arising from the use of homologous sequences in the analysis of global searching molecular dynamics simulations. In addition, because clustering of lowest energy models arising from homologous sequences only happens when the estimation of the helix tilt is correct, it may provide a validation for the helix tilt estimate.

Full Text

The Full Text of this article is available as a PDF (181.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. D., Arkin I. T., Engelman D. M., Brünger A. T. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nat Struct Biol. 1995 Feb;2(2):154–162. doi: 10.1038/nsb0295-154. [DOI] [PubMed] [Google Scholar]
  2. Adams P. D., Engelman D. M., Brünger A. T. Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching. Proteins. 1996 Nov;26(3):257–261. doi: 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  3. Arkin I. T., Adams P. D., Brünger A. T., Smith S. O., Engelman D. M. Structural perspectives of phospholamban, a helical transmembrane pentamer. Annu Rev Biophys Biomol Struct. 1997;26:157–179. doi: 10.1146/annurev.biophys.26.1.157. [DOI] [PubMed] [Google Scholar]
  4. Arkin I. T., Adams P. D., MacKenzie K. R., Lemmon M. A., Brünger A. T., Engelman D. M. Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel. EMBO J. 1994 Oct 17;13(20):4757–4764. doi: 10.1002/j.1460-2075.1994.tb06801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bleasby A. J., Akrigg D., Attwood T. K. OWL--a non-redundant composite protein sequence database. Nucleic Acids Res. 1994 Sep;22(17):3574–3577. [PMC free article] [PubMed] [Google Scholar]
  6. Briggs J. A., Torres J., Arkin I. T. A new method to model membrane protein structure based on silent amino acid substitutions. Proteins. 2001 Aug 15;44(3):370–375. doi: 10.1002/prot.1102. [DOI] [PubMed] [Google Scholar]
  7. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  8. Duff K. C., Ashley R. H. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology. 1992 Sep;190(1):485–489. doi: 10.1016/0042-6822(92)91239-q. [DOI] [PubMed] [Google Scholar]
  9. Duff K. C., Gilchrist P. J., Saxena A. M., Bradshaw J. P. Neutron diffraction reveals the site of amantadine blockade in the influenza A M2 ion channel. Virology. 1994 Jul;202(1):287–293. doi: 10.1006/viro.1994.1345. [DOI] [PubMed] [Google Scholar]
  10. Duff K. C., Kelly S. M., Price N. C., Bradshaw J. P. The secondary structure of influenza A M2 transmembrane domain. A circular dichroism study. FEBS Lett. 1992 Oct 26;311(3):256–258. doi: 10.1016/0014-5793(92)81114-2. [DOI] [PubMed] [Google Scholar]
  11. Fujii J., Maruyama K., Tada M., MacLennan D. H. Expression and site-specific mutagenesis of phospholamban. Studies of residues involved in phosphorylation and pentamer formation. J Biol Chem. 1989 Aug 5;264(22):12950–12955. [PubMed] [Google Scholar]
  12. Hay A. J., Wolstenholme A. J., Skehel J. J., Smith M. H. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 1985 Nov;4(11):3021–3024. doi: 10.1002/j.1460-2075.1985.tb04038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karim C. B., Stamm J. D., Karim J., Jones L. R., Thomas D. D. Cysteine reactivity and oligomeric structures of phospholamban and its mutants. Biochemistry. 1998 Sep 1;37(35):12074–12081. doi: 10.1021/bi980642n. [DOI] [PubMed] [Google Scholar]
  14. Kimura Y., Kurzydlowski K., Tada M., MacLennan D. H. Phospholamban inhibitory function is activated by depolymerization. J Biol Chem. 1997 Jun 13;272(24):15061–15064. doi: 10.1074/jbc.272.24.15061. [DOI] [PubMed] [Google Scholar]
  15. Kovacs F. A., Cross T. A. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys J. 1997 Nov;73(5):2511–2517. doi: 10.1016/S0006-3495(97)78279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kukol A., Adams P. D., Rice L. M., Brunger A. T., Arkin T. I. Experimentally based orientational refinement of membrane protein models: A structure for the Influenza A M2 H+ channel. J Mol Biol. 1999 Feb 26;286(3):951–962. doi: 10.1006/jmbi.1998.2512. [DOI] [PubMed] [Google Scholar]
  17. Lemmon M. A., Flanagan J. M., Hunt J. F., Adair B. D., Bormann B. J., Dempsey C. E., Engelman D. M. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem. 1992 Apr 15;267(11):7683–7689. [PubMed] [Google Scholar]
  18. Lemmon M. A., Flanagan J. M., Treutlein H. R., Zhang J., Engelman D. M. Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry. 1992 Dec 29;31(51):12719–12725. doi: 10.1021/bi00166a002. [DOI] [PubMed] [Google Scholar]
  19. MacKenzie K. R., Prestegard J. H., Engelman D. M. A transmembrane helix dimer: structure and implications. Science. 1997 Apr 4;276(5309):131–133. doi: 10.1126/science.276.5309.131. [DOI] [PubMed] [Google Scholar]
  20. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  21. Simmerman H. K., Jones L. R. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev. 1998 Oct;78(4):921–947. doi: 10.1152/physrev.1998.78.4.921. [DOI] [PubMed] [Google Scholar]
  22. Simmerman H. K., Kobayashi Y. M., Autry J. M., Jones L. R. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem. 1996 Mar 8;271(10):5941–5946. doi: 10.1074/jbc.271.10.5941. [DOI] [PubMed] [Google Scholar]
  23. Torres J., Adams P. D., Arkin I. T. Use of a new label, (13)==(18)O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data. J Mol Biol. 2000 Jul 21;300(4):677–685. doi: 10.1006/jmbi.2000.3885. [DOI] [PubMed] [Google Scholar]
  24. Torres J., Kukol A., Arkin I. T. Mapping the energy surface of transmembrane helix-helix interactions. Biophys J. 2001 Nov;81(5):2681–2692. doi: 10.1016/S0006-3495(01)75911-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Treutlein H. R., Lemmon M. A., Engelman D. M., Brünger A. T. The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. Biochemistry. 1992 Dec 29;31(51):12726–12732. doi: 10.1021/bi00166a003. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES