Abstract
A two-dimensional (2D) model of lipid bilayers was developed and used to investigate a possible role of membrane lateral tension in membrane fusion. We found that an increase of lateral tension in contacting monolayers of 2D analogs of liposomes and planar membranes could cause not only hemifusion, but also complete fusion when internal pressure is introduced in the model. With a certain set of model parameters it was possible to induce hemifusion-like structural changes by a tension increase in only one of the two contacting bilayers. The effect of lysolipids was modeled as an insertion of a small number of extra molecules into the cis or trans side of the interacting bilayers at different stages of simulation. It was found that cis insertion arrests fusion and trans insertion has no inhibitory effect on fusion. The possibility of protein participation in tension-driven fusion was tested in simulation, with one of two model liposomes containing a number of structures capable of reducing the area occupied by them in the outer monolayer. It was found that condensation of these structures was sufficient to produce membrane reorganization similar to that observed in simulations with "protein-free" bilayers. These data support the hypothesis that changes in membrane lateral tension may be responsible for fusion in both model phospholipid membranes and in biological protein-mediated fusion.
Full Text
The Full Text of this article is available as a PDF (243.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bentz J. Membrane fusion mediated by coiled coils: a hypothesis. Biophys J. 2000 Feb;78(2):886–900. doi: 10.1016/S0006-3495(00)76646-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonnafous P., Stegmann T. Membrane perturbation and fusion pore formation in influenza hemagglutinin-mediated membrane fusion. A new model for fusion. J Biol Chem. 2000 Mar 3;275(9):6160–6166. doi: 10.1074/jbc.275.9.6160. [DOI] [PubMed] [Google Scholar]
- Chanturiya A. N. Fast two dimensional computer simulation of bilayer hemifusion. J Biomol Struct Dyn. 1997 Dec;15(3):547–553. doi: 10.1080/07391102.1997.10508965. [DOI] [PubMed] [Google Scholar]
- Chanturiya A., Chernomordik L. V., Zimmerberg J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14423–14428. doi: 10.1073/pnas.94.26.14423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanturiya A., Scaria P., Woodle M. C. The role of membrane lateral tension in calcium-induced membrane fusion. J Membr Biol. 2000 Jul 1;176(1):67–75. doi: 10.1007/s00232001076. [DOI] [PubMed] [Google Scholar]
- Chanturiya A., Whitaker M., Zimmerberg J. Calcium-induced fusion of sea urchin egg secretory vesicles with planar phospholipid bilayer membranes. Mol Membr Biol. 1999 Jan-Mar;16(1):89–94. doi: 10.1080/096876899294805. [DOI] [PubMed] [Google Scholar]
- Chernomordik L. V., Vogel S. S., Sokoloff A., Onaran H. O., Leikina E. A., Zimmerberg J. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 1993 Feb 22;318(1):71–76. doi: 10.1016/0014-5793(93)81330-3. [DOI] [PubMed] [Google Scholar]
- Chernomordik L., Chanturiya A., Green J., Zimmerberg J. The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J. 1995 Sep;69(3):922–929. doi: 10.1016/S0006-3495(95)79966-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen F. S., Akabas M. H., Zimmerberg J., Finkelstein A. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J Cell Biol. 1984 Mar;98(3):1054–1062. doi: 10.1083/jcb.98.3.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García R. A., Pantazatos S. P., Pantazatos D. P., MacDonald R. C. Cholesterol stabilizes hemifused phospholipid bilayer vesicles. Biochim Biophys Acta. 2001 Apr 2;1511(2):264–270. doi: 10.1016/s0005-2736(01)00283-8. [DOI] [PubMed] [Google Scholar]
- Kozlov M. M., Chernomordik L. V. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. Biophys J. 1998 Sep;75(3):1384–1396. doi: 10.1016/S0006-3495(98)74056-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J., Lentz B. R. Outer leaflet-packing defects promote poly(ethylene glycol)-mediated fusion of large unilamellar vesicles. Biochemistry. 1997 Jan 14;36(2):421–431. doi: 10.1021/bi9622332. [DOI] [PubMed] [Google Scholar]
- Lentz B. R., Lee J. K. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? Mol Membr Biol. 1999 Oct-Nov;16(4):279–296. doi: 10.1080/096876899294508. [DOI] [PubMed] [Google Scholar]
- Marsh D. Lateral pressure in membranes. Biochim Biophys Acta. 1996 Oct 29;1286(3):183–223. doi: 10.1016/s0304-4157(96)00009-3. [DOI] [PubMed] [Google Scholar]
- Martin I, I, Ruysschaert J, Epand RM. Role of the N-terminal peptides of viral envelope proteins in membrane fusion. Adv Drug Deliv Rev. 1999 Aug 20;38(3):233–255. doi: 10.1016/s0169-409x(99)00031-9. [DOI] [PubMed] [Google Scholar]
- Pantazatos D. P., MacDonald R. C. Directly observed membrane fusion between oppositely charged phospholipid bilayers. J Membr Biol. 1999 Jul 1;170(1):27–38. doi: 10.1007/s002329900535. [DOI] [PubMed] [Google Scholar]
- Rand R. P. Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioeng. 1981;10:277–314. doi: 10.1146/annurev.bb.10.060181.001425. [DOI] [PubMed] [Google Scholar]
- Safran S. A., Kuhl T. L., Israelachvili J. N. Polymer-induced membrane contraction, phase separation, and fusion via Marangoni flow. Biophys J. 2001 Aug;81(2):659–666. doi: 10.1016/S0006-3495(01)75730-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel D. P. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys J. 1999 Jan;76(1 Pt 1):291–313. doi: 10.1016/S0006-3495(99)77197-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel S. S., Chernomordik L. V., Zimmerberg J. Calcium-triggered fusion of exocytotic granules requires proteins in only one membrane. J Biol Chem. 1992 Dec 25;267(36):25640–25643. [PubMed] [Google Scholar]
- Zimmerberg J, Chernomordik LV. Membrane fusion. Adv Drug Deliv Rev. 1999 Aug 20;38(3):197–205. doi: 10.1016/s0169-409x(99)00029-0. [DOI] [PubMed] [Google Scholar]