Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):3118–3127. doi: 10.1016/S0006-3495(02)75653-1

A non-cross-bridge stiffness in activated frog muscle fibers.

Maria A Bagni 1, Giovanni Cecchi 1, Barbara Colombini 1, Francesco Colomo 1
PMCID: PMC1302100  PMID: 12023235

Abstract

Force responses to fast ramp stretches of various amplitude and velocity, applied during tetanic contractions, were measured in single intact fibers from frog tibialis anterior muscle. Experiments were performed at 14 degrees C at approximately 2.1 microm sarcomere length on fibers bathed in Ringer's solution containing various concentrations of 2,3-butanedione monoxime (BDM) to greatly reduce the isometric tension. The fast tension transient produced by the stretch was followed by a period, lasting until relaxation, during which the tension remained constant to a value that greatly exceeded the isometric tension. The excess of tension was termed "static tension," and the ratio between the force and the accompanying sarcomere length change was termed "static stiffness." The static stiffness was independent of the active tension developed by the fiber, and independent of stretch amplitude and stretching velocity in the whole range tested; it increased with sarcomere length in the range 2.1-2.8 microm, to decrease again at longer lengths. Static stiffness increased well ahead of tension during the tetanus rise, and fell ahead of tension during relaxation. These results suggest that activation increased the stiffness of some sarcomeric structure(s) outside the cross-bridges.

Full Text

The Full Text of this article is available as a PDF (121.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagni M. A., Cecchi G., Colombini B., Colomo F. Sarcomere tension-stiffness relation during the tetanus rise in single frog muscle fibres. J Muscle Res Cell Motil. 1999 Aug;20(5-6):469–476. doi: 10.1023/a:1005582324129. [DOI] [PubMed] [Google Scholar]
  2. Bagni M. A., Cecchi G., Colomo F., Garzella P. Development of stiffness precedes cross-bridge attachment during the early tension rise in single frog muscle fibres. J Physiol. 1994 Dec 1;481(Pt 2):273–278. doi: 10.1113/jphysiol.1994.sp020437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bressler B. H., Clinch N. F. The compliance of contracting skeletal muscle. J Physiol. 1974 Mar;237(3):477–493. doi: 10.1113/jphysiol.1974.sp010493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cavagna G. A., Citterio G. Effect of stretching on the elastic characteristics and the contractile component of frog striated muscle. J Physiol. 1974 May;239(1):1–14. doi: 10.1113/jphysiol.1974.sp010552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavagna G. A. Effect of temperature and velocity of stretching on stress relaxation of contracting frog muscle fibres. J Physiol. 1993 Mar;462:161–173. doi: 10.1113/jphysiol.1993.sp019549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cecchi G., Griffiths P. J., Taylor S. Muscular contraction: kinetics of crossbridge attachment studied by high-frequency stiffness measurements. Science. 1982 Jul 2;217(4554):70–72. doi: 10.1126/science.6979780. [DOI] [PubMed] [Google Scholar]
  7. Edman K. A., Elzinga G., Noble M. I. Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol. 1978 Aug;281:139–155. doi: 10.1113/jphysiol.1978.sp012413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edman K. A., Elzinga G., Noble M. I. Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol. 1982 Nov;80(5):769–784. doi: 10.1085/jgp.80.5.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edman K. A., Tsuchiya T. Strain of passive elements during force enhancement by stretch in frog muscle fibres. J Physiol. 1996 Jan 1;490(Pt 1):191–205. doi: 10.1113/jphysiol.1996.sp021135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Escobar A. L., Monck J. R., Fernandez J. M., Vergara J. L. Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres. Nature. 1994 Feb 24;367(6465):739–741. doi: 10.1038/367739a0. [DOI] [PubMed] [Google Scholar]
  11. Flitney F. W., Hirst D. G. Cross-bridge detachment and sarcomere 'give' during stretch of active frog's muscle. J Physiol. 1978 Mar;276:449–465. doi: 10.1113/jphysiol.1978.sp012246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ford L. E., Huxley A. F., Simmons R. M. Tension transients during the rise of tetanic tension in frog muscle fibres. J Physiol. 1986 Mar;372:595–609. doi: 10.1113/jphysiol.1986.sp016027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fryer M. W., Neering I. R., Stephenson D. G. Effects of 2,3-butanedione monoxime on the contractile activation properties of fast- and slow-twitch rat muscle fibres. J Physiol. 1988 Dec;407:53–75. doi: 10.1113/jphysiol.1988.sp017403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Getz E. B., Cooke R., Lehman S. L. Phase transition in force during ramp stretches of skeletal muscle. Biophys J. 1998 Dec;75(6):2971–2983. doi: 10.1016/S0006-3495(98)77738-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haugen P., Sten-Knudsen O. Sarcomere lengthening and tension drop in the latent period of isolated frog skeletal muscle fibers. J Gen Physiol. 1976 Sep;68(3):247–265. doi: 10.1085/jgp.68.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herrmann C., Wray J., Travers F., Barman T. Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry. 1992 Dec 8;31(48):12227–12232. doi: 10.1021/bi00163a036. [DOI] [PubMed] [Google Scholar]
  18. Higuchi H., Takemori S. Butanedione monoxime suppresses contraction and ATPase activity of rabbit skeletal muscle. J Biochem. 1989 Apr;105(4):638–643. doi: 10.1093/oxfordjournals.jbchem.a122717. [DOI] [PubMed] [Google Scholar]
  19. Horiuti K., Higuchi H., Umazume Y., Konishi M., Okazaki O., Kurihara S. Mechanism of action of 2, 3-butanedione 2-monoxime on contraction of frog skeletal muscle fibres. J Muscle Res Cell Motil. 1988 Apr;9(2):156–164. doi: 10.1007/BF01773737. [DOI] [PubMed] [Google Scholar]
  20. Julian F. J., Morgan D. L. The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol. 1979 Aug;293:379–392. doi: 10.1113/jphysiol.1979.sp012895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kellermayer M. S., Granzier H. L. Calcium-dependent inhibition of in vitro thin-filament motility by native titin. FEBS Lett. 1996 Feb 19;380(3):281–286. doi: 10.1016/0014-5793(96)00055-5. [DOI] [PubMed] [Google Scholar]
  22. Linari M., Lucii L., Reconditi M., Casoni M. E., Amenitsch H., Bernstorff S., Piazzesi G., Lombardi V. A combined mechanical and X-ray diffraction study of stretch potentiation in single frog muscle fibres. J Physiol. 2000 Aug 1;526(Pt 3):589–596. doi: 10.1111/j.1469-7793.2000.00589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lombardi V., Piazzesi G. The contractile response during steady lengthening of stimulated frog muscle fibres. J Physiol. 1990 Dec;431:141–171. doi: 10.1113/jphysiol.1990.sp018324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lyster D. J., Stephenson D. G. Contractile activation and measurements of intracellular Ca2+ concentration in cane toad twitch fibres in the presence of 2,3-butanedione monoxime. Exp Physiol. 1995 Jul;80(4):543–560. doi: 10.1113/expphysiol.1995.sp003866. [DOI] [PubMed] [Google Scholar]
  25. Maylie J., Hui C. S. Action of 2,3-butanedione monoxime on calcium signals in frog cut twitch fibres containing antipyrylazo III. J Physiol. 1991 Oct;442:551–567. doi: 10.1113/jphysiol.1991.sp018808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morgan D. L. New insights into the behavior of muscle during active lengthening. Biophys J. 1990 Feb;57(2):209–221. doi: 10.1016/S0006-3495(90)82524-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Noble M. I. Enhancement of mechanical performance of striated muscle by stretch during contraction. Exp Physiol. 1992 Jul;77(4):539–552. doi: 10.1113/expphysiol.1992.sp003618. [DOI] [PubMed] [Google Scholar]
  28. Piazzesi G., Linari M., Reconditi M., Vanzi F., Lombardi V. Cross-bridge detachment and attachment following a step stretch imposed on active single frog muscle fibres. J Physiol. 1997 Jan 1;498(Pt 1):3–15. doi: 10.1113/jphysiol.1997.sp021837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schoenberg M. Equilibrium muscle cross-bridge behavior. Theoretical considerations. Biophys J. 1985 Sep;48(3):467–475. doi: 10.1016/S0006-3495(85)83802-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stienen G. J., Versteeg P. G., Papp Z., Elzinga G. Mechanical properties of skinned rabbit psoas and soleus muscle fibres during lengthening: effects of phosphate and Ca2+. J Physiol. 1992;451:503–523. doi: 10.1113/jphysiol.1992.sp019176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stuyvers B. D., Miura M., Jin J. P., ter Keurs H. E. Ca(2+)-dependence of diastolic properties of cardiac sarcomeres: involvement of titin. Prog Biophys Mol Biol. 1998;69(2-3):425–443. doi: 10.1016/s0079-6107(98)00018-2. [DOI] [PubMed] [Google Scholar]
  32. Sugi H. Tension changes during and after stretch in frog muscle fibres. J Physiol. 1972 Aug;225(1):237–253. doi: 10.1113/jphysiol.1972.sp009935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sugi H., Tsuchiya T. Enhancement of mechanical performance in frog muscle fibres after quick increases in load. J Physiol. 1981;319:239–252. doi: 10.1113/jphysiol.1981.sp013904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sun Y. B., Lou F., Edman K. A. 2,3-Butanedione monoxime increases speed of relaxation in single muscle fibres of frog. Acta Physiol Scand. 2001 May;172(1):53–61. doi: 10.1046/j.1365-201X.2001.00818.x. [DOI] [PubMed] [Google Scholar]
  35. Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
  36. Tripathy A., Xu L., Pasek D. A., Meissner G. Effects of 2,3-butanedione 2-monoxime on Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. J Membr Biol. 1999 Jun 1;169(3):189–198. doi: 10.1007/s002329900530. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES