Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):3134–3143. doi: 10.1016/S0006-3495(02)75655-5

Cofilin and DNase I affect the conformation of the small domain of actin.

Irina V Dedova 1, Vadim N Dedov 1, Neil J Nosworthy 1, Brett D Hambly 1, Cris G dos Remedios 1
PMCID: PMC1302102  PMID: 12023237

Abstract

Cofilin binding induces an allosteric conformational change in subdomain 2 of actin, reducing the distance between probes attached to Gln-41 (subdomain 2) and Cys-374 (subdomain 1) from 34.4 to 31.4 A (pH 6.8) as demonstrated by fluorescence energy transfer spectroscopy. This effect was slightly less pronounced at pH 8.0. In contrast, binding of DNase I increased this distance (35.5 A), a change that was not pH-sensitive. Although DNase I-induced changes in the distance along the small domain of actin were modest, a significantly larger change (38.2 A) was observed when the ternary complex of cofilin-actin-DNase I was formed. Saturation binding of cofilin prevents pyrene fluorescence enhancement normally associated with actin polymerization. Changes in the emission and excitation spectra of pyrene-F actin in the presence of cofilin indicate that subdomain 1 (near Cys-374) assumes a G-like conformation. Thus, the enhancement of pyrene fluorescence does not correspond to the extent of actin polymerization in the presence of cofilin. The structural changes in G and F actin induced by these actin-binding proteins may be important for understanding the mechanism regulating the G-actin pool in cells.

Full Text

The Full Text of this article is available as a PDF (222.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballweber E., Giehl K., Hannappel E., Huff T., Jockusch B. M., Mannherz H. G. Plant profilin induces actin polymerization from actin : beta-thymosin complexes and competes directly with beta-thymosins and with negative co-operativity with DNase I for binding to actin. FEBS Lett. 1998 Mar 27;425(2):251–255. doi: 10.1016/s0014-5793(98)00240-3. [DOI] [PubMed] [Google Scholar]
  2. Ballweber E., Hannappel E., Huff T., Mannherz H. G. Mapping the binding site of thymosin beta4 on actin by competition with G-actin binding proteins indicates negative co-operativity between binding sites located on opposite subdomains of actin. Biochem J. 1997 Nov 1;327(Pt 3):787–793. doi: 10.1042/bj3270787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bamburg J. R. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230. doi: 10.1146/annurev.cellbio.15.1.185. [DOI] [PubMed] [Google Scholar]
  4. Barden J. A., dos Remedios C. G. The environment of the high-affinity cation binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy. J Biochem. 1984 Sep;96(3):913–921. doi: 10.1093/oxfordjournals.jbchem.a134910. [DOI] [PubMed] [Google Scholar]
  5. Bonet C., Ternent D., Maciver S. K., Mozo-Villarias A. Rapid formation and high diffusibility of actin-cofilin cofilaments at low pH. Eur J Biochem. 2000 Jun;267(11):3378–3384. doi: 10.1046/j.1432-1327.2000.01372.x. [DOI] [PubMed] [Google Scholar]
  6. Borovikov Y. S., Moraczewska J., Khoroshev M. I., Strzelecka-Gołaszewska H. Proteolytic cleavage of actin within the DNase-I-binding loop changes the conformation of F-actin and its sensitivity to myosin binding. Biochim Biophys Acta. 2000 Mar 16;1478(1):138–151. doi: 10.1016/s0167-4838(00)00005-4. [DOI] [PubMed] [Google Scholar]
  7. Carlier M. F., Laurent V., Santolini J., Melki R., Didry D., Xia G. X., Hong Y., Chua N. H., Pantaloni D. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 1997 Mar 24;136(6):1307–1322. doi: 10.1083/jcb.136.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carlier M. F., Ressad F., Pantaloni D. Control of actin dynamics in cell motility. Role of ADF/cofilin. J Biol Chem. 1999 Nov 26;274(48):33827–33830. doi: 10.1074/jbc.274.48.33827. [DOI] [PubMed] [Google Scholar]
  9. Chik J. K., Lindberg U., Schutt C. E. The structure of an open state of beta-actin at 2.65 A resolution. J Mol Biol. 1996 Nov 8;263(4):607–623. doi: 10.1006/jmbi.1996.0602. [DOI] [PubMed] [Google Scholar]
  10. Crosbie R. H., Miller C., Cheung P., Goodnight T., Muhlrad A., Reisler E. Structural connectivity in actin: effect of C-terminal modifications on the properties of actin. Biophys J. 1994 Nov;67(5):1957–1964. doi: 10.1016/S0006-3495(94)80678-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Didry D., Carlier M. F., Pantaloni D. Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J Biol Chem. 1998 Oct 2;273(40):25602–25611. doi: 10.1074/jbc.273.40.25602. [DOI] [PubMed] [Google Scholar]
  12. Du J., Frieden C. Kinetic studies on the effect of yeast cofilin on yeast actin polymerization. Biochemistry. 1998 Sep 22;37(38):13276–13284. doi: 10.1021/bi981117r. [DOI] [PubMed] [Google Scholar]
  13. Egelman E. H., Orlova A. Allostery, cooperativity, and different structural states in F-actin. J Struct Biol. 1995 Sep-Oct;115(2):159–162. doi: 10.1006/jsbi.1995.1040. [DOI] [PubMed] [Google Scholar]
  14. Hawkins M., Pope B., Maciver S. K., Weeds A. G. Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry. 1993 Sep 28;32(38):9985–9993. doi: 10.1021/bi00089a014. [DOI] [PubMed] [Google Scholar]
  15. Hayden S. M., Miller P. S., Brauweiler A., Bamburg J. R. Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry. 1993 Sep 28;32(38):9994–10004. doi: 10.1021/bi00089a015. [DOI] [PubMed] [Google Scholar]
  16. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  17. Ichetovkin I., Han J., Pang K. M., Knecht D. A., Condeelis J. S. Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motil Cytoskeleton. 2000 Apr;45(4):293–306. doi: 10.1002/(SICI)1097-0169(200004)45:4<293::AID-CM5>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  18. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  19. Khaitlina S. Y., Moraczewska J., Strzelecka-Gołaszewska H. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur J Biochem. 1993 Dec 15;218(3):911–920. doi: 10.1111/j.1432-1033.1993.tb18447.x. [DOI] [PubMed] [Google Scholar]
  20. Khaitlina S., Hinssen H. Conformational changes in actin induced by its interaction with gelsolin. Biophys J. 1997 Aug;73(2):929–937. doi: 10.1016/S0006-3495(97)78125-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim E., Reisler E. Intermolecular coupling between loop 38-52 and the C-terminus in actin filaments. Biophys J. 1996 Oct;71(4):1914–1919. doi: 10.1016/S0006-3495(96)79390-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim E., Wriggers W., Phillips M., Kokabi K., Rubenstein P. A., Reisler E. Cross-linking constraints on F-actin structure. J Mol Biol. 2000 Jun 2;299(2):421–429. doi: 10.1006/jmbi.2000.3727. [DOI] [PubMed] [Google Scholar]
  23. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  24. Kuznetsova I., Antropova O., Turoverov K., Khaitlina S. Conformational changes in subdomain I of actin induced by proteolytic cleavage within the DNase I-binding loop: energy transfer from tryptophan to AEDANS. FEBS Lett. 1996 Mar 25;383(1-2):105–108. doi: 10.1016/0014-5793(96)00238-4. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lappalainen P., Drubin D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature. 1997 Jul 3;388(6637):78–82. doi: 10.1038/40418. [DOI] [PubMed] [Google Scholar]
  27. Lazarides E., Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4742–4746. doi: 10.1073/pnas.71.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mannherz H. G., Goody R. S., Konrad M., Nowak E. The interaction of bovine pancreatic deoxyribonuclease I and skeletal muscle actin. Eur J Biochem. 1980 Mar;104(2):367–379. doi: 10.1111/j.1432-1033.1980.tb04437.x. [DOI] [PubMed] [Google Scholar]
  29. McGough A., Pope B., Chiu W., Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol. 1997 Aug 25;138(4):771–781. doi: 10.1083/jcb.138.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McGough A., Pope B., Weeds A. The ADF/cofilin family: accelerators of actin reorganization. Results Probl Cell Differ. 2001;32:135–154. doi: 10.1007/978-3-540-46560-7_10. [DOI] [PubMed] [Google Scholar]
  31. McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
  32. Miki M. Detection of conformational changes in actin by fluorescence resonance energy transfer between tyrosine-69 and cysteine-374. Biochemistry. 1991 Nov 12;30(45):10878–10884. doi: 10.1021/bi00109a011. [DOI] [PubMed] [Google Scholar]
  33. Moraczewska J., Strzelecka-Gołaszewska H., Moens P. D., dos Remedios C. G. Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy. Biochem J. 1996 Jul 15;317(Pt 2):605–611. doi: 10.1042/bj3170605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moriyama K., Yonezawa N., Sakai H., Yahara I., Nishida E. Mutational analysis of an actin-binding site of cofilin and characterization of chimeric proteins between cofilin and destrin. J Biol Chem. 1992 Apr 15;267(11):7240–7244. [PubMed] [Google Scholar]
  35. Muneyuki E., Nishida E., Sutoh K., Sakai H. Purification of cofilin, a 21,000 molecular weight actin-binding protein, from porcine kidney and identification of the cofilin-binding site in the actin sequence. J Biochem. 1985 Feb;97(2):563–568. doi: 10.1093/oxfordjournals.jbchem.a135091. [DOI] [PubMed] [Google Scholar]
  36. Nagaoka R., Minami N., Hayakawa K., Abe H., Obinata T. Quantitative analysis of low molecular weight G-actin-binding proteins, cofilin, ADF and profilin, expressed in developing and degenerating chicken skeletal muscles. J Muscle Res Cell Motil. 1996 Aug;17(4):463–473. doi: 10.1007/BF00123362. [DOI] [PubMed] [Google Scholar]
  37. Nishida E., Maekawa S., Sakai H. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry. 1984 Oct 23;23(22):5307–5313. doi: 10.1021/bi00317a032. [DOI] [PubMed] [Google Scholar]
  38. Obinata T., Nagaoka-Yasuda R., Ono S., Kusano K., Mohri K., Ohtaka Y., Yamashiro S., Okada K., Abe H. Low molecular-weight G-actin binding proteins involved in the regulation of actin assembly during myofibrillogenesis. Cell Struct Funct. 1997 Feb;22(1):181–189. doi: 10.1247/csf.22.181. [DOI] [PubMed] [Google Scholar]
  39. Otterbein L. R., Graceffa P., Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science. 2001 Jul 27;293(5530):708–711. doi: 10.1126/science.1059700. [DOI] [PubMed] [Google Scholar]
  40. Page R., Lindberg U., Schutt C. E. Domain motions in actin. J Mol Biol. 1998 Jul 17;280(3):463–474. doi: 10.1006/jmbi.1998.1879. [DOI] [PubMed] [Google Scholar]
  41. Rosenblatt J., Agnew B. J., Abe H., Bamburg J. R., Mitchison T. J. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J Cell Biol. 1997 Mar 24;136(6):1323–1332. doi: 10.1083/jcb.136.6.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schutt C. E., Myslik J. C., Rozycki M. D., Goonesekere N. C., Lindberg U. The structure of crystalline profilin-beta-actin. Nature. 1993 Oct 28;365(6449):810–816. doi: 10.1038/365810a0. [DOI] [PubMed] [Google Scholar]
  43. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  44. Strzelecka-Gołaszewska H., Mossakowska M., Woźniak A., Moraczewska J., Nakayama H. Long-range conformational effects of proteolytic removal of the last three residues of actin. Biochem J. 1995 Apr 15;307(Pt 2):527–534. doi: 10.1042/bj3070527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sutoh K., Mabuchi I. Improved method for mapping the binding site of an actin-binding protein in the actin sequence. Use of a site-directed antibody against the N-terminal region of actin as a probe of its N-terminus. Biochemistry. 1986 Oct 7;25(20):6186–6192. doi: 10.1021/bi00368a053. [DOI] [PubMed] [Google Scholar]
  46. Takashi R. A novel actin label: a fluorescent probe at glutamine-41 and its consequences. Biochemistry. 1988 Feb 9;27(3):938–943. doi: 10.1021/bi00403a015. [DOI] [PubMed] [Google Scholar]
  47. Theriot J. A. Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J Cell Biol. 1997 Mar 24;136(6):1165–1168. doi: 10.1083/jcb.136.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weber A. Actin binding proteins that change extent and rate of actin monomer-polymer distribution by different mechanisms. Mol Cell Biochem. 1999 Jan;190(1-2):67–74. [PubMed] [Google Scholar]
  49. Wriggers W., Tang J. X., Azuma T., Marks P. W., Janmey P. A. Cofilin and gelsolin segment-1: molecular dynamics simulation and biochemical analysis predict a similar actin binding mode. J Mol Biol. 1998 Oct 9;282(5):921–932. doi: 10.1006/jmbi.1998.2048. [DOI] [PubMed] [Google Scholar]
  50. Yonezawa N., Nishida E., Sakai H. pH control of actin polymerization by cofilin. J Biol Chem. 1985 Nov 25;260(27):14410–14412. [PubMed] [Google Scholar]
  51. Zigmond S. H. Recent quantitative studies of actin filament turnover during cell locomotion. Cell Motil Cytoskeleton. 1993;25(4):309–316. doi: 10.1002/cm.970250402. [DOI] [PubMed] [Google Scholar]
  52. dos Remedios C. G., Dickens M. J. Actin microcrystals and tubes formed in the presence of gadolinium ions. Nature. 1978 Dec 14;276(5689):731–733. doi: 10.1038/276731a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES