Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):3150–3159. doi: 10.1016/S0006-3495(02)75657-9

Regulatory and essential light chains of myosin rotate equally during contraction of skeletal muscle.

Julian Borejdo 1, Dmitry S Ushakov 1, Irina Akopova 1
PMCID: PMC1302104  PMID: 12023239

Abstract

Myosin head consists of a globular catalytic domain and a long alpha-helical regulatory domain. The catalytic domain is responsible for binding to actin and for setting the stage for the main force-generating event, which is a "swing" of the regulatory domain. The proximal end of the regulatory domain contains the essential light chain 1 (LC1). This light chain can interact through the N and C termini with actin and myosin heavy chain. The interactions may inhibit the motion of the proximal end. In consequence the motion of the distal end (containing regulatory light chain, RLC) may be different from the motion of the proximal end. To test this possibility, the angular motion of LC1 and RLC was measured simultaneously during muscle contraction. Engineered LC1 and RLC were labeled with red and green fluorescent probes, respectively, and exchanged with native light chains of striated muscle. The confocal microscope was modified to measure the anisotropy from 0.3 microm(3) volume containing approximately 600 fluorescent cross-bridges. Static measurements revealed that the magnitude of the angular change associated with transition from rigor to relaxation was less than 5 degrees for both light chains. Cross-bridges were activated by a precise delivery of ATP from a caged precursor. The time course of the angular change consisted of a fast phase followed by a slow phase and was the same for both light chains. These results suggest that the interactions of LC1 do not inhibit the angular motion of the proximal end of the regulatory domain and that the whole domain rotates as a rigid body.

Full Text

The Full Text of this article is available as a PDF (598.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. S., Ling N., Irving M., Goldman Y. E. Orientation changes in myosin regulatory light chains following photorelease of ATP in skinned muscle fibers. Biophys J. 1996 Apr;70(4):1847–1862. doi: 10.1016/S0006-3495(96)79750-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreev O. A., Borejdo J. Binding of heavy-chain and essential light-chain 1 of S1 to actin depends on the degree of saturation of F-actin filaments with S1. Biochemistry. 1995 Nov 14;34(45):14829–14833. doi: 10.1021/bi00045a025. [DOI] [PubMed] [Google Scholar]
  3. Andreev O. A., Saraswat L. D., Lowey S., Slaughter C., Borejdo J. Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin. Biochemistry. 1999 Feb 23;38(8):2480–2485. doi: 10.1021/bi981706x. [DOI] [PubMed] [Google Scholar]
  4. Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J. 1979 Jun;26(3):557–573. doi: 10.1016/S0006-3495(79)85271-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berger C. L., Thomas D. D. Rotational dynamics of actin-bound myosin heads in active myofibrils. Biochemistry. 1993 Apr 13;32(14):3812–3821. doi: 10.1021/bi00065a038. [DOI] [PubMed] [Google Scholar]
  6. Borejdo J., Ushakov D. S., Moreland R., Akopova I., Reshetnyak Y., Saraswat L. D., Kamm K., Lowey S. The power stroke causes changes in the orientation and mobility of the termini of essential light chain 1 of myosin. Biochemistry. 2001 Apr 3;40(13):3796–3803. doi: 10.1021/bi002527u. [DOI] [PubMed] [Google Scholar]
  7. Burghardt T. P., Garamszegi S. P., Park S., Ajtai K. Tertiary structural changes in the cleft containing the ATP sensitive tryptophan and reactive thiol are consistent with pivoting of the myosin heavy chain at Gly699. Biochemistry. 1998 Jun 2;37(22):8035–8047. doi: 10.1021/bi980015y. [DOI] [PubMed] [Google Scholar]
  8. Cheung H. C., Gryczynski I., Malak H., Wiczk W., Johnson M. L., Lakowicz J. R. Conformational flexibility of the Cys 697-Cys 707 segment of myosin subfragment-1. Distance distributions by frequency-domain fluorometry. Biophys Chem. 1991 Apr;40(1):1–17. doi: 10.1016/0301-4622(91)85025-l. [DOI] [PubMed] [Google Scholar]
  9. Cooke R. Actomyosin interaction in striated muscle. Physiol Rev. 1997 Jul;77(3):671–697. doi: 10.1152/physrev.1997.77.3.671. [DOI] [PubMed] [Google Scholar]
  10. Cooke R., Crowder M. S., Thomas D. D. Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature. 1982 Dec 23;300(5894):776–778. doi: 10.1038/300776a0. [DOI] [PubMed] [Google Scholar]
  11. Cooper W. C., Chrin L. R., Berger C. L. Detection of fluorescently labeled actin-bound cross-bridges in actively contracting myofibrils. Biophys J. 2000 Mar;78(3):1449–1457. doi: 10.1016/S0006-3495(00)76698-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Corrie J. E., Brandmeier B. D., Ferguson R. E., Trentham D. R., Kendrick-Jones J., Hopkins S. C., van der Heide U. A., Goldman Y. E., Sabido-David C., Dale R. E. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature. 1999 Jul 29;400(6743):425–430. doi: 10.1038/22704. [DOI] [PubMed] [Google Scholar]
  13. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  14. Eisenberg E., Hill T. L., Chen Y. Cross-bridge model of muscle contraction. Quantitative analysis. Biophys J. 1980 Feb;29(2):195–227. doi: 10.1016/S0006-3495(80)85126-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  16. Funatsu T., Harada Y., Tokunaga M., Saito K., Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995 Apr 6;374(6522):555–559. doi: 10.1038/374555a0. [DOI] [PubMed] [Google Scholar]
  17. Goldman Y. E., Hibberd M. G., Trentham D. R. Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5'-triphosphate. J Physiol. 1984 Sep;354:577–604. doi: 10.1113/jphysiol.1984.sp015394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goldman Y. E. Wag the tail: structural dynamics of actomyosin. Cell. 1998 Apr 3;93(1):1–4. doi: 10.1016/s0092-8674(00)81137-x. [DOI] [PubMed] [Google Scholar]
  19. Guilford W. H., Dupuis D. E., Kennedy G., Wu J., Patlak J. B., Warshaw D. M. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J. 1997 Mar;72(3):1006–1021. doi: 10.1016/S0006-3495(97)78753-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hopkins S. C., Sabido-David C., Corrie J. E., Irving M., Goldman Y. E. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers. Biophys J. 1998 Jun;74(6):3093–3110. doi: 10.1016/S0006-3495(98)78016-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huang W., Wilson G. J., Brown L. J., Lam H., Hambly B. D. EPR and CD spectroscopy of fast myosin light chain conformation during binding of trifluoperazine. Eur J Biochem. 1998 Oct 15;257(2):457–465. doi: 10.1046/j.1432-1327.1998.2570457.x. [DOI] [PubMed] [Google Scholar]
  22. Hubley M. J., Locke B. R., Moerland T. S. The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. Biochim Biophys Acta. 1996 Oct 24;1291(2):115–121. doi: 10.1016/0304-4165(96)00053-0. [DOI] [PubMed] [Google Scholar]
  23. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  24. Irving M., St Claire Allen T., Sabido-David C., Craik J. S., Brandmeier B., Kendrick-Jones J., Corrie J. E., Trentham D. R., Goldman Y. E. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature. 1995 Jun 22;375(6533):688–691. doi: 10.1038/375688a0. [DOI] [PubMed] [Google Scholar]
  25. Ishijima A., Kojima H., Funatsu T., Tokunaga M., Higuchi H., Tanaka H., Yanagida T. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell. 1998 Jan 23;92(2):161–171. doi: 10.1016/s0092-8674(00)80911-3. [DOI] [PubMed] [Google Scholar]
  26. Ling N., Shrimpton C., Sleep J., Kendrick-Jones J., Irving M. Fluorescent probes of the orientation of myosin regulatory light chains in relaxed, rigor, and contracting muscle. Biophys J. 1996 Apr;70(4):1836–1846. doi: 10.1016/S0006-3495(96)79749-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Malmqvist U., Trybus K. M., Yagi S., Carmichael J., Fay F. S. Slow cycling of unphosphorylated myosin is inhibited by calponin, thus keeping smooth muscle relaxed. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7655–7660. doi: 10.1073/pnas.94.14.7655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mendelson R. A., Morales M. F., Botts J. Segmental flexibility of the S-1 moiety of myosin. Biochemistry. 1973 Jun 5;12(12):2250–2255. doi: 10.1021/bi00736a011. [DOI] [PubMed] [Google Scholar]
  29. Miyata H., Hakozaki H., Yoshikawa H., Suzuki N., Kinosita K., Jr, Nishizaka T., Ishiwata S. Stepwise motion of an actin filament over a small number of heavy meromyosin molecules is revealed in an in vitro motility assay. J Biochem. 1994 Apr;115(4):644–647. doi: 10.1093/oxfordjournals.jbchem.a124389. [DOI] [PubMed] [Google Scholar]
  30. Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
  31. Pliszka B., Redowicz M. J., Stepkowski D. Interaction of the N-terminal part of the A1 essential light chain with the myosin heavy chain. Biochem Biophys Res Commun. 2001 Mar 9;281(4):924–928. doi: 10.1006/bbrc.2001.4454. [DOI] [PubMed] [Google Scholar]
  32. Prince H. P., Trayer H. R., Henry G. D., Trayer I. P., Dalgarno D. C., Levine B. A., Cary P. D., Turner C. Proton nuclear-magnetic-resonance spectroscopy of myosin subfragment 1 isoenzymes. Eur J Biochem. 1981 Dec;121(1):213–219. doi: 10.1111/j.1432-1033.1981.tb06451.x. [DOI] [PubMed] [Google Scholar]
  33. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  34. Sabido-David C., Brandmeier B., Craik J. S., Corrie J. E., Trentham D. R., Irving M. Steady-state fluorescence polarization studies of the orientation of myosin regulatory light chains in single skeletal muscle fibers using pure isomers of iodoacetamidotetramethylrhodamine. Biophys J. 1998 Jun;74(6):3083–3092. doi: 10.1016/S0006-3495(98)78015-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sabido-David C., Hopkins S. C., Saraswat L. D., Lowey S., Goldman Y. E., Irving M. Orientation changes of fluorescent probes at five sites on the myosin regulatory light chain during contraction of single skeletal muscle fibres. J Mol Biol. 1998 Jun 5;279(2):387–402. doi: 10.1006/jmbi.1998.1771. [DOI] [PubMed] [Google Scholar]
  36. Saxton M. J. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J. 1994 Feb;66(2 Pt 1):394–401. doi: 10.1016/s0006-3495(94)80789-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shih W. M., Gryczynski Z., Lakowicz J. R., Spudich J. A. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell. 2000 Sep 1;102(5):683–694. doi: 10.1016/s0092-8674(00)00090-8. [DOI] [PubMed] [Google Scholar]
  38. Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982 Jul 20;21(15):3654–3661. doi: 10.1021/bi00258a020. [DOI] [PubMed] [Google Scholar]
  39. Suzuki Y., Yasunaga T., Ohkura R., Wakabayashi T., Sutoh K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature. 1998 Nov 26;396(6709):380–383. doi: 10.1038/24640. [DOI] [PubMed] [Google Scholar]
  40. Sweeney H. L. Function of the N terminus of the myosin essential light chain of vertebrate striated muscle. Biophys J. 1995 Apr;68(4 Suppl):112S–119S. [PMC free article] [PubMed] [Google Scholar]
  41. Thomas D. D., Cooke R. Orientation of spin-labeled myosin heads in glycerinated muscle fibers. Biophys J. 1980 Dec;32(3):891–906. doi: 10.1016/S0006-3495(80)85024-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Timson D. J., Trayer H. R., Trayer I. P. The N-terminus of A1-type myosin essential light chains binds actin and modulates myosin motor function. Eur J Biochem. 1998 Aug 1;255(3):654–662. doi: 10.1046/j.1432-1327.1998.2550654.x. [DOI] [PubMed] [Google Scholar]
  43. Uyeda T. Q., Abramson P. D., Spudich J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4459–4464. doi: 10.1073/pnas.93.9.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Warshaw D. M., Guilford W. H., Freyzon Y., Krementsova E., Palmiter K. A., Tyska M. J., Baker J. E., Trybus K. M. The light chain binding domain of expressed smooth muscle heavy meromyosin acts as a mechanical lever. J Biol Chem. 2000 Nov 24;275(47):37167–37172. doi: 10.1074/jbc.M006438200. [DOI] [PubMed] [Google Scholar]
  45. Warshaw D. M., Hayes E., Gaffney D., Lauzon A. M., Wu J., Kennedy G., Trybus K., Lowey S., Berger C. Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8034–8039. doi: 10.1073/pnas.95.14.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weber A., Murray J. M. Molecular control mechanisms in muscle contraction. Physiol Rev. 1973 Jul;53(3):612–673. doi: 10.1152/physrev.1973.53.3.612. [DOI] [PubMed] [Google Scholar]
  47. Wells A. L., Lin A. W., Chen L. Q., Safer D., Cain S. M., Hasson T., Carragher B. O., Milligan R. A., Sweeney H. L. Myosin VI is an actin-based motor that moves backwards. Nature. 1999 Sep 30;401(6752):505–508. doi: 10.1038/46835. [DOI] [PubMed] [Google Scholar]
  48. Wilson M. G., Mendelson R. A. A comparison of order and orientation of crossbridges in rigor and relaxed muscle fibres using fluorescence polarization. J Muscle Res Cell Motil. 1983 Dec;4(6):671–693. doi: 10.1007/BF00712160. [DOI] [PubMed] [Google Scholar]
  49. Wolff-Long V. L., Saraswat L. D., Lowey S. Cysteine mutants of light chain-2 form disulfide bonds in skeletal muscle myosin. J Biol Chem. 1993 Nov 5;268(31):23162–23167. [PubMed] [Google Scholar]
  50. Xiao M., Andreev O. A., Borejdo J. Rigor cross-bridges bind to two actin monomers in thin filaments of rabbit psoas muscle. J Mol Biol. 1995 Apr 28;248(2):294–307. [PubMed] [Google Scholar]
  51. Yamamoto K., Sekine T. Interaction of alkali light chain 1 with actin: effect of ionic strength on the cross-linking of alkali light chain 1 with actin. J Biochem. 1983 Dec;94(6):2075–2078. doi: 10.1093/oxfordjournals.jbchem.a134565. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES