Abstract
As double-stranded DNA is stretched to its B-form contour length, models of polymer elasticity can describe the dramatic increase in measured force. When the molecule is stretched beyond this contour length, it shows a highly cooperative overstretching transition. We have measured the elasticity and overstretching transition as a function of monovalent salt concentration by stretching single DNA molecules in an optical tweezers apparatus. As the sodium ion concentration was decreased from 1000 to 2.57 mM, the persistence length of DNA increased from 46 to 59 nm, while the elastic stretch modulus remained approximately constant. These results are consistent with the model of Podgornik, et al. (2000, J. Chem. Phys. 113:9343-9350) using an effective DNA length per charge of 0.67 nm. As the monovalent salt concentration was decreased over the same range, the overstretching transition force decreased from 68 to 52 pN. This reduction in force is attributed to a decrease in the stability of the DNA double helix with decreasing salt concentration. Although, as was shown previously, the hydrogen bonds holding DNA strands in a helical conformation break as DNA is overstretched, these data indicate that both DNA strands remain close together during the transition.
Full Text
The Full Text of this article is available as a PDF (405.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahsan A., Rudnick J., Bruinsma R. Elasticity theory of the B-DNA to S-DNA transition. Biophys J. 1998 Jan;74(1):132–137. doi: 10.1016/S0006-3495(98)77774-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allemand J. F., Bensimon D., Lavery R., Croquette V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14152–14157. doi: 10.1073/pnas.95.24.14152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann C. G., Smith S. B., Bloomfield V. A., Bustamante C. Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6185–6190. doi: 10.1073/pnas.94.12.6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennink M. L., Schärer O. D., Kanaar R., Sakata-Sogawa K., Schins J. M., Kanger J. S., de Grooth B. G., Greve J. Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1. Cytometry. 1999 Jul 1;36(3):200–208. doi: 10.1002/(sici)1097-0320(19990701)36:3<200::aid-cyto9>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
- Bond J. P., Anderson C. F., Record M. T., Jr Conformational transitions of duplex and triplex nucleic acid helices: thermodynamic analysis of effects of salt concentration on stability using preferential interaction coefficients. Biophys J. 1994 Aug;67(2):825–836. doi: 10.1016/S0006-3495(94)80542-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouchiat C., Wang M. D., Allemand J., Strick T., Block S. M., Croquette V. Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys J. 1999 Jan;76(1 Pt 1):409–413. doi: 10.1016/s0006-3495(99)77207-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bustamante C., Marko J. F., Siggia E. D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994 Sep 9;265(5178):1599–1600. doi: 10.1126/science.8079175. [DOI] [PubMed] [Google Scholar]
- Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E. Mechanical stability of single DNA molecules. Biophys J. 2000 Apr;78(4):1997–2007. doi: 10.1016/S0006-3495(00)76747-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
- Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEIDUSCHEK E. P. On the factors controlling the reversibility of DNA denaturation. J Mol Biol. 1962 Jun;4:467–487. doi: 10.1016/s0022-2836(62)80103-x. [DOI] [PubMed] [Google Scholar]
- Hegner M., Smith S. B., Bustamante C. Polymerization and mechanical properties of single RecA-DNA filaments. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10109–10114. doi: 10.1073/pnas.96.18.10109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosikov K. M., Gorin A. A., Zhurkin V. B., Olson W. K. DNA stretching and compression: large-scale simulations of double helical structures. J Mol Biol. 1999 Jun 25;289(5):1301–1326. doi: 10.1006/jmbi.1999.2798. [DOI] [PubMed] [Google Scholar]
- Lebrun A., Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996 Jun 15;24(12):2260–2267. doi: 10.1093/nar/24.12.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magazzú G., Bottaro G., Cataldo F., Iacono G., Di Donato F., Patane R., Cavataio F., Maltese I., Romano C., Arco A. Increasing incidence of childhood celiac disease in Sicily: results of a multicenter study. Acta Paediatr. 1994 Oct;83(10):1065–1069. doi: 10.1111/j.1651-2227.1994.tb12987.x. [DOI] [PubMed] [Google Scholar]
- Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
- Mehta A. D., Finer J. T., Spudich J. A. Reflections of a lucid dreamer: optical trap design considerations. Methods Cell Biol. 1998;55:47–69. doi: 10.1016/s0091-679x(08)60402-1. [DOI] [PubMed] [Google Scholar]
- Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
- Rouzina I., Bloomfield V. A. Force-induced melting of the DNA double helix 1. Thermodynamic analysis. Biophys J. 2001 Feb;80(2):882–893. doi: 10.1016/S0006-3495(01)76067-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouzina I., Bloomfield V. A. Force-induced melting of the DNA double helix. 2. Effect of solution conditions. Biophys J. 2001 Feb;80(2):894–900. doi: 10.1016/S0006-3495(01)76068-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
- Smith S. B., Finzi L., Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 1992 Nov 13;258(5085):1122–1126. doi: 10.1126/science.1439819. [DOI] [PubMed] [Google Scholar]
- Stigter D. An electrostatic model of B-DNA for its stability against unwinding. Biophys Chem. 1998 Dec 14;75(3):229–233. doi: 10.1016/s0301-4622(98)00211-7. [DOI] [PubMed] [Google Scholar]
- Wenner J. R., Bloomfield V. A. Buffer effects on EcoRV kinetics as measured by fluorescent staining and digital imaging of plasmid cleavage. Anal Biochem. 1999 Mar 15;268(2):201–212. doi: 10.1006/abio.1998.3079. [DOI] [PubMed] [Google Scholar]
- Williams M. C., Wenner J. R., Rouzina I., Bloomfield V. A. Effect of pH on the overstretching transition of double-stranded DNA: evidence of force-induced DNA melting. Biophys J. 2001 Feb;80(2):874–881. doi: 10.1016/S0006-3495(01)76066-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams M. C., Wenner J. R., Rouzina I., Bloomfield V. A. Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching. Biophys J. 2001 Apr;80(4):1932–1939. doi: 10.1016/S0006-3495(01)76163-2. [DOI] [PMC free article] [PubMed] [Google Scholar]