Abstract
Femtosecond spectroscopy in combination with site-directed mutagenesis has been used to study the dynamics of primary electron transfer in native and 12 mutated reaction centers of Blastochloris (B) (formerly called Rhodopseudomonas) viridis. The decay times of the first excited state P* vary at room temperature between of 0.6 and 50 ps, and at low temperatures between 0.25 and 90 ps. These changes in time constants are discussed within the scope of nonadiabatic electron transfer theory using different models: 1) If the mutation is assumed to predominantly influence the energetics of the primary electron transfer intermediates, the analysis of the room temperature data for the first electron transfer step to the intermediate P(+)B(A)(-) yields a reorganization energy lambda = 600 +/- 200 cm(-1) and a free energy gap Delta G ranging from -600 cm(-1) to 800 cm(-1). However, this analysis fails to describe the temperature dependence of the reaction rates. 2) A more realistic description of the temperature dependence of the primary electron transfer requires different values for the energetics and specific variations of the electronic coupling upon mutation. Apparently the mutations also lead to pronounced changes in the electronic coupling, which may even dominate the change in the reaction rate. One main message of the paper is that a simple relationship between mutation and a change in one reaction parameter cannot be given and that at the very least the electronic coupling is changed upon mutation.
Full Text
The Full Text of this article is available as a PDF (301.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arlt T., Dohse B., Schmidt S., Wachtveitl J., Laussermair E., Zinth W., Oesterhelt D. Electron transfer dynamics of Rhodopseudomonas viridis reaction centers with a modified binding site for the accessory bacteriochlorophyll. Biochemistry. 1996 Jul 16;35(28):9235–9244. doi: 10.1021/bi960185f. [DOI] [PubMed] [Google Scholar]
- Arlt T., Schmidt S., Kaiser W., Lauterwasser C., Meyer M., Scheer H., Zinth W. The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11757–11761. doi: 10.1073/pnas.90.24.11757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beekman L. M., Visschers R. W., Monshouwer R., Heer-Dawson M., Mattioli T. A., McGlynn P., Hunter C. N., Robert B., van Stokkum I. H., van Grondelle R. Time-resolved and steady-state spectroscopic analysis of membrane-bound reaction centers from Rhodobacter sphaeroides: comparisons with detergent-solubilized complexes. Biochemistry. 1995 Nov 14;34(45):14712–14721. doi: 10.1021/bi00045a012. [DOI] [PubMed] [Google Scholar]
- Breton J., Martin J. L., Migus A., Antonetti A., Orszag A. Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5121–5125. doi: 10.1073/pnas.83.14.5121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deisenhofer J., Michel H. Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J. 1989 Aug;8(8):2149–2170. doi: 10.1002/j.1460-2075.1989.tb08338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X. W., Finlay D. R., Guiney D., Helinski D. R. Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid. 1985 Mar;13(2):149–153. doi: 10.1016/0147-619x(85)90068-x. [DOI] [PubMed] [Google Scholar]
- Dohse B., Mathis P., Wachtveitl J., Laussermair E., Iwata S., Michel H., Oesterhelt D. Electron transfer from the tetraheme cytochrome to the special pair in the Rhodopseudomonas viridis reaction center: effect of mutations of tyrosine L162. Biochemistry. 1995 Sep 12;34(36):11335–11343. doi: 10.1021/bi00036a006. [DOI] [PubMed] [Google Scholar]
- Du M., Rosenthal S. J., Xie X., DiMagno T. J., Schmidt M., Hanson D. K., Schiffer M., Norris J. R., Fleming G. R. Femtosecond spontaneous-emission studies of reaction centers from photosynthetic bacteria. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8517–8521. doi: 10.1073/pnas.89.18.8517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ermler U., Fritzsch G., Buchanan S. K., Michel H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. Structure. 1994 Oct 15;2(10):925–936. doi: 10.1016/s0969-2126(94)00094-8. [DOI] [PubMed] [Google Scholar]
- Farchaus J. W., Wachtveitl J., Mathis P., Oesterhelt D. Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c2 mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 1. Site-directed mutagenesis and initial characterization. Biochemistry. 1993 Oct 12;32(40):10885–10893. doi: 10.1021/bi00091a044. [DOI] [PubMed] [Google Scholar]
- Finkele U., Lauterwasser C., Zinth W., Gray K. A., Oesterhelt D. Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides. Biochemistry. 1990 Sep 18;29(37):8517–8521. doi: 10.1021/bi00489a002. [DOI] [PubMed] [Google Scholar]
- Gray K. A., Farchaus J. W., Wachtveitl J., Breton J., Oesterhelt D. Initial characterization of site-directed mutants of tyrosine M210 in the reaction centre of Rhodobacter sphaeroides. EMBO J. 1990 Jul;9(7):2061–2070. doi: 10.1002/j.1460-2075.1990.tb07373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heller B. A., Holten D., Kirmaier C. Control of electron transfer between the L- and M-sides of photosynthetic reaction centers. Science. 1995 Aug 18;269(5226):940–945. doi: 10.1126/science.7638616. [DOI] [PubMed] [Google Scholar]
- Holzapfel W., Finkele U., Kaiser W., Oesterhelt D., Scheer H., Stilz H. U., Zinth W. Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5168–5172. doi: 10.1073/pnas.87.13.5168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuglstatter A., Hellwig P., Fritzsch G., Wachtveitl J., Oesterhelt D., Mäntele W., Michel H. Identification of a hydrogen bond in the phe M197-->Tyr mutant reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides by X-ray crystallography and FTIR spectroscopy. FEBS Lett. 1999 Dec 10;463(1-2):169–174. doi: 10.1016/s0014-5793(99)01614-2. [DOI] [PubMed] [Google Scholar]
- Lancaster C. R., Bibikova M. V., Sabatino P., Oesterhelt D., Michel H. Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-A resolution. J Biol Chem. 2000 Dec 15;275(50):39364–39368. doi: 10.1074/jbc.M008225200. [DOI] [PubMed] [Google Scholar]
- Lancaster C. R., Michel H. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. Structure. 1997 Oct 15;5(10):1339–1359. doi: 10.1016/s0969-2126(97)00285-2. [DOI] [PubMed] [Google Scholar]
- Laussermair E., Oesterhelt D. A system for site-specific mutagenesis of the photosynthetic reaction center in Rhodopseudomonas viridis. EMBO J. 1992 Feb;11(2):777–783. doi: 10.1002/j.1460-2075.1992.tb05111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattioli T. A., Lin X., Allen J. P., Williams J. C. Correlation between multiple hydrogen bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry. 1995 May 9;34(18):6142–6152. doi: 10.1021/bi00018a017. [DOI] [PubMed] [Google Scholar]
- Murchison H. A., Alden R. G., Allen J. P., Peloquin J. M., Taguchi A. K., Woodbury N. W., Williams J. C. Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry. 1993 Apr 6;32(13):3498–3505. doi: 10.1021/bi00064a038. [DOI] [PubMed] [Google Scholar]
- Nagarajan V., Parson W. W., Davis D., Schenck C. C. Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry. 1993 Nov 23;32(46):12324–12336. doi: 10.1021/bi00097a008. [DOI] [PubMed] [Google Scholar]
- Nagarajan V., Parson W. W., Gaul D., Schenck C. Effect of specific mutations of tyrosine-(M)210 on the primary photosynthetic electron-transfer process in Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7888–7892. doi: 10.1073/pnas.87.20.7888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ortega J. M., Dohse B., Oesterhelt D., Mathis P. Low-temperature electron transfer from cytochrome to the special pair in Rhodopseudomonas viridis: role of the L162 residue. Biophys J. 1998 Mar;74(3):1135–1148. doi: 10.1016/S0006-3495(98)77831-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parson W. W., Chu Z. T., Warshel A. Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta. 1990 Jun 26;1017(3):251–272. doi: 10.1016/0005-2728(90)90192-7. [DOI] [PubMed] [Google Scholar]
- Vos M. H., Lambry J. C., Robles S. J., Youvan D. C., Breton J., Martin J. L. Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8885–8889. doi: 10.1073/pnas.88.20.8885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vos M. H., Lambry J. C., Robles S. J., Youvan D. C., Breton J., Martin J. L. Femtosecond spectral evolution of the excited state of bacterial reaction centers at 10 K. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):613–617. doi: 10.1073/pnas.89.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachtveitl J., Farchaus J. W., Das R., Lutz M., Robert B., Mattioli T. A. Structure, spectroscopic, and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry. 1993 Nov 30;32(47):12875–12886. doi: 10.1021/bi00210a041. [DOI] [PubMed] [Google Scholar]
- Wachtveitl J., Farchaus J. W., Mathis P., Oesterhelt D. Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c2 mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 2. Quantitative kinetic analysis. Biochemistry. 1993 Oct 12;32(40):10894–10904. doi: 10.1021/bi00091a045. [DOI] [PubMed] [Google Scholar]
- Williams J. C., Alden R. G., Murchison H. A., Peloquin J. M., Woodbury N. W., Allen J. P. Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1992 Nov 17;31(45):11029–11037. doi: 10.1021/bi00160a012. [DOI] [PubMed] [Google Scholar]
- Woodbury N. W., Peloquin J. M., Alden R. G., Lin X., Lin S., Taguchi A. K., Williams J. C., Allen J. P. Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1994 Jul 5;33(26):8101–8112. doi: 10.1021/bi00192a015. [DOI] [PubMed] [Google Scholar]
