Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):3207–3213. doi: 10.1016/S0006-3495(02)75663-4

Influence of the environment in the conformation of alpha-helices studied by protein database search and molecular dynamics simulations.

Mireia Olivella 1, Xavier Deupi 1, Cedric Govaerts 1, Leonardo Pardo 1
PMCID: PMC1302110  PMID: 12023245

Abstract

The influence of the solvent on the main-chain conformation (phi and Psi dihedral angles) of alpha-helices has been studied by complementary approaches. A first approach consisted in surveying crystal structures of both soluble and membrane proteins. The residues of analysis were further classified as exposed to either the water (polar solvent) or the lipid (apolar solvent) environment or buried to the core of the protein (intermediate polarity). The statistical results show that the more polar the environment, the lower the value of phi(i) and the higher the value of Psi(i) are. The intrahelical hydrogen bond distance increases in water-exposed residues due to the additional hydrogen bond between the peptide carbonyl oxygen and the aqueous environment. A second approach involved nanosecond molecular dynamics simulations of poly-Ala alpha-helices in environments of different polarity: water to mimic hydrophilic environments that can form hydrogen bonds with the peptide carbonyl oxygen and methane to mimic hydrophobic environments without this hydrogen bond capabilities. These simulations reproduce similar effects in phi and Psi angles and intrahelical hydrogen bond distance and angle as observed in the protein survey analysis. The magnitude of the intrahelical hydrogen bond in the methane environment is stronger than in the water environment, suggesting that alpha-helices in membrane-embedded proteins are less flexible than in soluble proteins. There is a remarkable coincidence between the phi and Psi angles obtained in the analysis of residues exposed to the lipid in membrane proteins and the results from computer simulations in methane, which suggests that this simulation protocol properly mimic the lipidic cell membrane and reproduce several structural characteristics of membrane-embedded proteins. Finally, we have compared the phi and Psi torsional angles of Pro kinks in membrane protein crystal structures and in computer simulations.

Full Text

The Full Text of this article is available as a PDF (150.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqvist J., Luzhkov V. Ion permeation mechanism of the potassium channel. Nature. 2000 Apr 20;404(6780):881–884. doi: 10.1038/35009114. [DOI] [PubMed] [Google Scholar]
  2. Ballesteros J. A., Deupi X., Olivella M., Haaksma E. E., Pardo L. Serine and threonine residues bend alpha-helices in the chi(1) = g(-) conformation. Biophys J. 2000 Nov;79(5):2754–2760. doi: 10.1016/S0006-3495(00)76514-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  4. Blundell T., Barlow D., Borkakoti N., Thornton J. Solvent-induced distortions and the curvature of alpha-helices. Nature. 1983 Nov 17;306(5940):281–283. doi: 10.1038/306281a0. [DOI] [PubMed] [Google Scholar]
  5. Chakrabarti P., Pal D. Main-chain conformational features at different conformations of the side-chains in proteins. Protein Eng. 1998 Aug;11(8):631–647. doi: 10.1093/protein/11.8.631. [DOI] [PubMed] [Google Scholar]
  6. Forrest L. R., Sansom M. S. Membrane simulations: bigger and better? Curr Opin Struct Biol. 2000 Apr;10(2):174–181. doi: 10.1016/s0959-440x(00)00066-x. [DOI] [PubMed] [Google Scholar]
  7. Gether U., Lin S., Ghanouni P., Ballesteros J. A., Weinstein H., Kobilka B. K. Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor. EMBO J. 1997 Nov 17;16(22):6737–6747. doi: 10.1093/emboj/16.22.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Govaerts C., Blanpain C., Deupi X., Ballet S., Ballesteros J. A., Wodak S. J., Vassart G., Pardo L., Parmentier M. The TXP motif in the second transmembrane helix of CCR5. A structural determinant of chemokine-induced activation. J Biol Chem. 2001 Jan 25;276(16):13217–13225. doi: 10.1074/jbc.M011670200. [DOI] [PubMed] [Google Scholar]
  9. Govaerts C., Lefort A., Costagliola S., Wodak S. J., Ballesteros J. A., Van Sande J., Pardo L., Vassart G. A conserved Asn in transmembrane helix 7 is an on/off switch in the activation of the thyrotropin receptor. J Biol Chem. 2001 Apr 18;276(25):22991–22999. doi: 10.1074/jbc.M102244200. [DOI] [PubMed] [Google Scholar]
  10. Kumar S., Bansal M. Geometrical and sequence characteristics of alpha-helices in globular proteins. Biophys J. 1998 Oct;75(4):1935–1944. doi: 10.1016/S0006-3495(98)77634-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Milner-White E. J., Bell L. H., Maccallum P. H. Pyrrolidine ring puckering in cis and trans-proline residues in proteins and polypeptides. Different puckers are favoured in certain situations. J Mol Biol. 1992 Dec 5;228(3):725–734. doi: 10.1016/0022-2836(92)90859-i. [DOI] [PubMed] [Google Scholar]
  12. Monné M., Hermansson M., von Heijne G. A turn propensity scale for transmembrane helices. J Mol Biol. 1999 Apr 23;288(1):141–145. doi: 10.1006/jmbi.1999.2657. [DOI] [PubMed] [Google Scholar]
  13. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  14. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  15. Rees D. C., Eisenberg D. Turning a reference inside-out: commentary on an article by Stevens and Arkin entitled: "Are membrane proteins 'inside-out' proteins?" (Proteins 1999;36:135-143) Proteins. 2000 Feb 1;38(2):121–122. [PubMed] [Google Scholar]
  16. Ri Y., Ballesteros J. A., Abrams C. K., Oh S., Verselis V. K., Weinstein H., Bargiello T. A. The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. Biophys J. 1999 Jun;76(6):2887–2898. doi: 10.1016/S0006-3495(99)77444-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sankararamakrishnan R., Vishveshwara S. Geometry of proline-containing alpha-helices in proteins. Int J Pept Protein Res. 1992 Apr;39(4):356–363. doi: 10.1111/j.1399-3011.1992.tb01595.x. [DOI] [PubMed] [Google Scholar]
  18. Sansom M. S., Weinstein H. Hinges, swivels and switches: the role of prolines in signalling via transmembrane alpha-helices. Trends Pharmacol Sci. 2000 Nov;21(11):445–451. doi: 10.1016/s0165-6147(00)01553-4. [DOI] [PubMed] [Google Scholar]
  19. Senes A., Gerstein M., Engelman D. M. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol. 2000 Feb 25;296(3):921–936. doi: 10.1006/jmbi.1999.3488. [DOI] [PubMed] [Google Scholar]
  20. Stevens T. J., Arkin I. T. Are membrane proteins "inside-out" proteins? Proteins. 1999 Jul 1;36(1):135–143. doi: 10.1002/(sici)1097-0134(19990701)36:1<135::aid-prot11>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  21. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  22. von Heijne G. Proline kinks in transmembrane alpha-helices. J Mol Biol. 1991 Apr 5;218(3):499–503. doi: 10.1016/0022-2836(91)90695-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES