Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):3246–3253. doi: 10.1016/S0006-3495(02)75666-X

Effect of heavy water on protein flexibility.

Patrizia Cioni 1, Giovanni B Strambini 1
PMCID: PMC1302113  PMID: 12023248

Abstract

The effects of heavy water (D(2)O) on internal dynamics of proteins were assessed by both the intrinsic phosphorescence lifetime of deeply buried Trp residues, which reports on the local structure about the triplet probe, and the bimolecular acrylamide phosphorescence quenching rate constant that is a measure of the average acrylamide diffusion coefficient through the macromolecule. The results obtained with several protein systems (ribonuclease T1, superoxide dismutase, beta-lactoglobulin, liver alcohol dehydrogenase, alkaline phosphatase, and apo- and Cd-azurin) demonstrate that in most cases D(2)O does significantly increase the rigidity the native structure. With the exception of alkaline phosphatase, the kinetics of the structure tightening effect of deuteration are rapid compared with the rate of H/D exchange of internal protons, which would then assign the dampening of structural fluctuations in D(2)O to a solvent effect, rather than to stronger intramolecular D bonding. Structure tightening by heavy water is generally amplified at higher temperatures, supporting a mostly hydrophobic nature of the underlying interaction, and under conditions that destabilize the globular fold.

Full Text

The Full Text of this article is available as a PDF (142.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baghurst P. A., Nichol L. W., Sawyer W. H. The effect of D 2 O on the association of -lactoglobulin A. J Biol Chem. 1972 May 25;247(10):3199–3204. [PubMed] [Google Scholar]
  2. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonneté F., Madern D., Zaccaï G. Stability against denaturation mechanisms in halophilic malate dehydrogenase "adapt" to solvent conditions. J Mol Biol. 1994 Dec 9;244(4):436–447. doi: 10.1006/jmbi.1994.1741. [DOI] [PubMed] [Google Scholar]
  4. Busel E. P., Burshtein E. A. Vliianie D20 na liuminestsentsiiu proizvodnykh triptofana pri komatnoi temperature i pri 77 gradusakh K. Biofizika. 1970 Nov-Dec;15(6):993–1001. [PubMed] [Google Scholar]
  5. Chakrabarti G., Kim S., Gupta M. L., Jr, Barton J. S., Himes R. H. Stabilization of tubulin by deuterium oxide. Biochemistry. 1999 Mar 9;38(10):3067–3072. doi: 10.1021/bi982461r. [DOI] [PubMed] [Google Scholar]
  6. Cioni P., Gabellieri E., Gonnelli M., Strambini G. B. Heterogeneity of protein conformation in solution from the lifetime of tryptophan phosphorescence. Biophys Chem. 1994 Sep;52(1):25–34. doi: 10.1016/0301-4622(94)00039-5. [DOI] [PubMed] [Google Scholar]
  7. Cioni P., Stroppolo M. E., Desideri A., Strambini G. B. Dynamic features of the subunit interface of Cu,Zn superoxide dismutase as probed by tryptophan phosphorescence. Arch Biochem Biophys. 2001 Jul 1;391(1):111–118. doi: 10.1006/abbi.2001.2407. [DOI] [PubMed] [Google Scholar]
  8. Dong A., Matsuura J., Manning M. C., Carpenter J. F. Intermolecular beta-sheet results from trifluoroethanol-induced nonnative alpha-helical structure in beta-sheet predominant proteins: infrared and circular dichroism spectroscopic study. Arch Biochem Biophys. 1998 Jul 15;355(2):275–281. doi: 10.1006/abbi.1998.0718. [DOI] [PubMed] [Google Scholar]
  9. Engeseth H. R., McMillin D. R. Studies of thermally induced denaturation of azurin and azurin derivatives by differential scanning calorimetry: evidence for copper selectivity. Biochemistry. 1986 May 6;25(9):2448–2455. doi: 10.1021/bi00357a023. [DOI] [PubMed] [Google Scholar]
  10. Fischer C. J., Schauerte J. A., Wisser K. C., Gafni A., Steel D. G. Hydrogen exchange at the core of Escherichia coli alkaline phosphatase studied by room-temperature tryptophan phosphorescence. Biochemistry. 2000 Feb 15;39(6):1455–1461. doi: 10.1021/bi991560h. [DOI] [PubMed] [Google Scholar]
  11. Gonnelli M., Strambini G. B. Phosphorescence lifetime of tryptophan in proteins. Biochemistry. 1995 Oct 24;34(42):13847–13857. doi: 10.1021/bi00042a017. [DOI] [PubMed] [Google Scholar]
  12. Guzzi R., Arcangeli C., Bizzarri A. R. A molecular dynamics simulation study of the solvent isotope effect on copper plastocyanin. Biophys Chem. 1999 Nov 15;82(1):9–22. doi: 10.1016/s0301-4622(99)00097-6. [DOI] [PubMed] [Google Scholar]
  13. HERMANS J., Jr, SCHERAGA H. A. The thermally induced configurational change of ribonuclease in water and deuterium. Biochim Biophys Acta. 1959 Dec;36:534–535. doi: 10.1016/0006-3002(59)90197-0. [DOI] [PubMed] [Google Scholar]
  14. Kao H. P., Verkman A. S. Construction and performance of a photobleaching recovery apparatus with microsecond time resolution. Biophys Chem. 1996 Mar 7;59(1-2):203–210. doi: 10.1016/0301-4622(95)00139-5. [DOI] [PubMed] [Google Scholar]
  15. Kern D., Zaccaí G., Giegé R. Effect of heavy water substitution for water on the tRNAVal-valyl-tRNA synthetase system from yeast. Biochemistry. 1980 Jul 8;19(14):3158–3164. doi: 10.1021/bi00555a007. [DOI] [PubMed] [Google Scholar]
  16. Kishner S., Trepman E., Galley W. C. Phosphorescence evidence for the role of solvent--protein interactions in the energetics of conformational flexibility of liver alcohol dehydrogenase. Can J Biochem. 1979 Nov;57(11):1299–1304. doi: 10.1139/o79-173. [DOI] [PubMed] [Google Scholar]
  17. Kresheck G. C., Schneider H., Scheraga H. A. The effect of D2-O on the thermal stability of proteins. Thermodynamic parameters for the transfer of model compounds from H2-O to D2-O. J Phys Chem. 1965 Sep;69(9):3132–3144. doi: 10.1021/j100893a054. [DOI] [PubMed] [Google Scholar]
  18. Lopez M. M., Makhatadze G. I. Solvent isotope effect on thermodynamics of hydration. Biophys Chem. 1998 Aug 24;74(2):117–125. doi: 10.1016/s0301-4622(98)00173-2. [DOI] [PubMed] [Google Scholar]
  19. Makhatadze G. I., Clore G. M., Gronenborn A. M. Solvent isotope effect and protein stability. Nat Struct Biol. 1995 Oct;2(10):852–855. doi: 10.1038/nsb1095-852. [DOI] [PubMed] [Google Scholar]
  20. Milne J. S., Mayne L., Roder H., Wand A. J., Englander S. W. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 1998 Mar;7(3):739–745. doi: 10.1002/pro.5560070323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Omori H., Kuroda M., Naora H., Takeda H., Nio Y., Otani H., Tamura K. Deuterium oxide (heavy water) accelerates actin assembly in vitro and changes microfilament distribution in cultured cells. Eur J Cell Biol. 1997 Nov;74(3):273–280. [PubMed] [Google Scholar]
  22. Parker M. J., Clarke A. R. Amide backbone and water-related H/D isotope effects on the dynamics of a protein folding reaction. Biochemistry. 1997 May 13;36(19):5786–5794. doi: 10.1021/bi9629283. [DOI] [PubMed] [Google Scholar]
  23. Schlyer B. D., Steel D. G., Gafni A. Long time-scale probing of the protein globular core using hydrogen-exchange and room temperature phosphorescence. Biochem Biophys Res Commun. 1996 Jun 25;223(3):670–674. doi: 10.1006/bbrc.1996.0953. [DOI] [PubMed] [Google Scholar]
  24. Schowen K. B., Schowen R. L. Solvent isotope effects of enzyme systems. Methods Enzymol. 1982;87:551–606. [PubMed] [Google Scholar]
  25. Subramaniam V., Bergenhem N. C., Gafni A., Steel D. G. Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase. Biochemistry. 1995 Jan 31;34(4):1133–1136. doi: 10.1021/bi00004a005. [DOI] [PubMed] [Google Scholar]
  26. Tang K. E., Dill K. A. Native protein fluctuations: the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability. J Biomol Struct Dyn. 1998 Oct;16(2):397–411. doi: 10.1080/07391102.1998.10508256. [DOI] [PubMed] [Google Scholar]
  27. Vanderkooi J. M., Calhoun D. B., Englander S. W. On the prevalence of room-temperature protein phosphorescence. Science. 1987 May 1;236(4801):568–569. doi: 10.1126/science.3576185. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES