Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jun;82(6):3343–3350. doi: 10.1016/S0006-3495(02)75674-9

Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy.

Philippe Desmeules 1, Michel Grandbois 1, Vladimir A Bondarenko 1, Akio Yamazaki 1, Christian Salesse 1
PMCID: PMC1302121  PMID: 12023256

Abstract

Myristoyl switch is a feature of several peripheral membrane proteins involved in signal transduction pathways. This unique molecular property is best illustrated by the "Ca(2+)-myristoyl switch" of recoverin, which is a Ca(2+)-binding protein present in retinal rod cells of vertebrates. In this transduction pathway, the Ca(2+)-myristoyl switch acts as a calcium sensor involved in cell recovery from photoactivation. Ca(2+) binding by recoverin induces the extrusion of its myristoyl group to the solvent, which leads to its translocation from cytosol to rod disk membranes. Force spectroscopy, based on atomic force microscope (AFM) technology, was used to determine the extent of membrane binding of recoverin in the absence and presence of calcium, and to quantify this force of binding. An adhesion force of 48 +/- 5 pN was measured between recoverin and supported phospholipid bilayers in the presence of Ca(2+). However, no binding was observed in the absence of Ca(2+). Experiments with nonmyristoylated recoverin confirmed these observations. Our results are consistent with previously measured extraction forces of lipids from membranes.

Full Text

The Full Text of this article is available as a PDF (254.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames J. B., Hendricks K. B., Strahl T., Huttner I. G., Hamasaki N., Thorner J. Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae. Biochemistry. 2000 Oct 10;39(40):12149–12161. doi: 10.1021/bi0012890. [DOI] [PubMed] [Google Scholar]
  2. Ames J. B., Ishima R., Tanaka T., Gordon J. I., Stryer L., Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature. 1997 Sep 11;389(6647):198–202. doi: 10.1038/38310. [DOI] [PubMed] [Google Scholar]
  3. Ames J. B., Tanaka T., Ikura M., Stryer L. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin. J Biol Chem. 1995 Dec 29;270(52):30909–30913. doi: 10.1074/jbc.270.52.30909. [DOI] [PubMed] [Google Scholar]
  4. Ames J. B., Tanaka T., Stryer L., Ikura M. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch. Biochemistry. 1994 Sep 6;33(35):10743–10753. doi: 10.1021/bi00201a023. [DOI] [PubMed] [Google Scholar]
  5. Benoit M., Gabriel D., Gerisch G., Gaub H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol. 2000 Jun;2(6):313–317. doi: 10.1038/35014000. [DOI] [PubMed] [Google Scholar]
  6. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  7. Braunewell K. H., Gundelfinger E. D. Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res. 1999 Jan;295(1):1–12. doi: 10.1007/s004410051207. [DOI] [PubMed] [Google Scholar]
  8. Burgoyne R. D., Weiss J. L. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001 Jan 1;353(Pt 1):1–12. [PMC free article] [PubMed] [Google Scholar]
  9. Buser C. A., Sigal C. T., Resh M. D., McLaughlin S. Membrane binding of myristylated peptides corresponding to the NH2 terminus of Src. Biochemistry. 1994 Nov 8;33(44):13093–13101. doi: 10.1021/bi00248a019. [DOI] [PubMed] [Google Scholar]
  10. Chen C. K., Inglese J., Lefkowitz R. J., Hurley J. B. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem. 1995 Jul 28;270(30):18060–18066. doi: 10.1074/jbc.270.30.18060. [DOI] [PubMed] [Google Scholar]
  11. Dizhoor A. M., Chen C. K., Olshevskaya E., Sinelnikova V. V., Phillipov P., Hurley J. B. Role of the acylated amino terminus of recoverin in Ca(2+)-dependent membrane interaction. Science. 1993 Feb 5;259(5096):829–832. doi: 10.1126/science.8430337. [DOI] [PubMed] [Google Scholar]
  12. Dizhoor A. M., Ericsson L. H., Johnson R. S., Kumar S., Olshevskaya E., Zozulya S., Neubert T. A., Stryer L., Hurley J. B., Walsh K. A. The NH2 terminus of retinal recoverin is acylated by a small family of fatty acids. J Biol Chem. 1992 Aug 15;267(23):16033–16036. [PubMed] [Google Scholar]
  13. Dizhoor A. M., Ray S., Kumar S., Niemi G., Spencer M., Brolley D., Walsh K. A., Philipov P. P., Hurley J. B., Stryer L. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science. 1991 Feb 22;251(4996):915–918. doi: 10.1126/science.1672047. [DOI] [PubMed] [Google Scholar]
  14. Dunphy J. T., Linder M. E. Signalling functions of protein palmitoylation. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):245–261. doi: 10.1016/s0005-2760(98)00130-1. [DOI] [PubMed] [Google Scholar]
  15. Duronio R. J., Jackson-Machelski E., Heuckeroth R. O., Olins P. O., Devine C. S., Yonemoto W., Slice L. W., Taylor S. S., Gordon J. I. Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1506–1510. doi: 10.1073/pnas.87.4.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Engel A., Gaub H. E., Müller D. J. Atomic force microscopy: a forceful way with single molecules. Curr Biol. 1999 Feb 25;9(4):R133–R136. doi: 10.1016/s0960-9822(99)80081-5. [DOI] [PubMed] [Google Scholar]
  17. Erickson M. A., Lagnado L., Zozulya S., Neubert T. A., Stryer L., Baylor D. A. The effect of recombinant recoverin on the photoresponse of truncated rod photoreceptors. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6474–6479. doi: 10.1073/pnas.95.11.6474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Finkelstein A. V., Janin J. The price of lost freedom: entropy of bimolecular complex formation. Protein Eng. 1989 Oct;3(1):1–3. doi: 10.1093/protein/3.1.1. [DOI] [PubMed] [Google Scholar]
  19. Fisher T. E., Oberhauser A. F., Carrion-Vazquez M., Marszalek P. E., Fernandez J. M. The study of protein mechanics with the atomic force microscope. Trends Biochem Sci. 1999 Oct;24(10):379–384. doi: 10.1016/s0968-0004(99)01453-x. [DOI] [PubMed] [Google Scholar]
  20. Flaherty K. M., Zozulya S., Stryer L., McKay D. B. Three-dimensional structure of recoverin, a calcium sensor in vision. Cell. 1993 Nov 19;75(4):709–716. doi: 10.1016/0092-8674(93)90491-8. [DOI] [PubMed] [Google Scholar]
  21. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  22. Grandbois M., Dettmann W., Benoit M., Gaub H. E. Affinity imaging of red blood cells using an atomic force microscope. J Histochem Cytochem. 2000 May;48(5):719–724. doi: 10.1177/002215540004800516. [DOI] [PubMed] [Google Scholar]
  23. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE. How strong is a covalent bond? . Science. 1999 Mar 12;283(5408):1727–1730. doi: 10.1126/science.283.5408.1727. [DOI] [PubMed] [Google Scholar]
  24. Gray-Keller M. P., Polans A. S., Palczewski K., Detwiler P. B. The effect of recoverin-like calcium-binding proteins on the photoresponse of retinal rods. Neuron. 1993 Mar;10(3):523–531. doi: 10.1016/0896-6273(93)90339-s. [DOI] [PubMed] [Google Scholar]
  25. Grenier S., Desmeules P., Dutta A. K., Yamazaki A., Salesse C. Determination of the depth of penetration of the alpha subunit of retinal G protein in membranes: a spectroscopic study. Biochim Biophys Acta. 1998 Mar 13;1370(2):199–206. doi: 10.1016/s0005-2736(97)00263-0. [DOI] [PubMed] [Google Scholar]
  26. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  27. Hughes R. E., Brzovic P. S., Klevit R. E., Hurley J. B. Calcium-dependent solvation of the myristoyl group of recoverin. Biochemistry. 1995 Sep 12;34(36):11410–11416. doi: 10.1021/bi00036a013. [DOI] [PubMed] [Google Scholar]
  28. Kawamura S., Hisatomi O., Kayada S., Tokunaga F., Kuo C. H. Recoverin has S-modulin activity in frog rods. J Biol Chem. 1993 Jul 15;268(20):14579–14582. [PubMed] [Google Scholar]
  29. Kim J., Shishido T., Jiang X., Aderem A., McLaughlin S. Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J Biol Chem. 1994 Nov 11;269(45):28214–28219. [PubMed] [Google Scholar]
  30. Klenchin V. A., Calvert P. D., Bownds M. D. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction. J Biol Chem. 1995 Jul 7;270(27):16147–16152. doi: 10.1074/jbc.270.27.16147. [DOI] [PubMed] [Google Scholar]
  31. Lange C., Koch K. W. Calcium-dependent binding of recoverin to membranes monitored by surface plasmon resonance spectroscopy in real time. Biochemistry. 1997 Oct 7;36(40):12019–12026. doi: 10.1021/bi970938d. [DOI] [PubMed] [Google Scholar]
  32. Leckband D. Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct. 2000;29:1–26. doi: 10.1146/annurev.biophys.29.1.1. [DOI] [PubMed] [Google Scholar]
  33. Leckband D., Müller W., Schmitt F. J., Ringsdorf H. Molecular mechanisms determining the strength of receptor-mediated intermembrane adhesion. Biophys J. 1995 Sep;69(3):1162–1169. doi: 10.1016/S0006-3495(95)79990-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Marrink S. J., Berger O., Tieleman P., Jähnig F. Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys J. 1998 Feb;74(2 Pt 1):931–943. doi: 10.1016/S0006-3495(98)74016-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  36. Morris V. J. Biological applications of scanning probe microscopies. Prog Biophys Mol Biol. 1994;61(2):131–185. doi: 10.1016/0079-6107(94)90008-6. [DOI] [PubMed] [Google Scholar]
  37. Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
  38. Müller D. J., Baumeister W., Engel A. Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13170–13174. doi: 10.1073/pnas.96.23.13170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Oberhauser A. F., Marszalek P. E., Erickson H. P., Fernandez J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 1998 May 14;393(6681):181–185. doi: 10.1038/30270. [DOI] [PubMed] [Google Scholar]
  40. Oesterhelt F., Oesterhelt D., Pfeiffer M., Engel A., Gaub H. E., Müller D. J. Unfolding pathways of individual bacteriorhodopsins. Science. 2000 Apr 7;288(5463):143–146. doi: 10.1126/science.288.5463.143. [DOI] [PubMed] [Google Scholar]
  41. Peitzsch R. M., McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry. 1993 Oct 5;32(39):10436–10443. doi: 10.1021/bi00090a020. [DOI] [PubMed] [Google Scholar]
  42. Pool C. T., Thompson T. E. Chain length and temperature dependence of the reversible association of model acylated proteins with lipid bilayers. Biochemistry. 1998 Jul 14;37(28):10246–10255. doi: 10.1021/bi980385m. [DOI] [PubMed] [Google Scholar]
  43. Ray S., Zozulya S., Niemi G. A., Flaherty K. M., Brolley D., Dizhoor A. M., McKay D. B., Hurley J., Stryer L. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5705–5709. doi: 10.1073/pnas.89.13.5705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Resh M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta. 1999 Aug 12;1451(1):1–16. doi: 10.1016/s0167-4889(99)00075-0. [DOI] [PubMed] [Google Scholar]
  45. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  46. Rief M., Pascual J., Saraste M., Gaub H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol. 1999 Feb 19;286(2):553–561. doi: 10.1006/jmbi.1998.2466. [DOI] [PubMed] [Google Scholar]
  47. Senin I. I., Zargarov A. A., Alekseev A. M., Gorodovikova E. N., Lipkin V. M., Philippov P. P. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase. FEBS Lett. 1995 Nov 27;376(1-2):87–90. doi: 10.1016/0014-5793(95)01187-2. [DOI] [PubMed] [Google Scholar]
  48. Sigal C. T., Zhou W., Buser C. A., McLaughlin S., Resh M. D. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12253–12257. doi: 10.1073/pnas.91.25.12253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Silvius J. R., Zuckermann M. J. Interbilayer transfer of phospholipid-anchored macromolecules via monomer diffusion. Biochemistry. 1993 Mar 30;32(12):3153–3161. doi: 10.1021/bi00063a030. [DOI] [PubMed] [Google Scholar]
  50. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tanaka T., Ames J. B., Harvey T. S., Stryer L., Ikura M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature. 1995 Aug 3;376(6539):444–447. doi: 10.1038/376444a0. [DOI] [PubMed] [Google Scholar]
  52. Zozulya S., Stryer L. Calcium-myristoyl protein switch. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11569–11573. doi: 10.1073/pnas.89.23.11569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES