Abstract
We previously demonstrated that activation of a 5HT(4) receptor coupled cAMP-dependent signaling pathway increases tetrodotoxin-resistant Na(+) current (I(Na)) in a nociceptor-like subpopulation of rat dorsal root ganglion cells (type 2). In the present study we used electrophysiology experiments and computer modeling studies to explore the mechanism(s) underlying the increase of I(Na) by 5HT. In electrophysiological experiments with type 2 dorsal root ganglion cells, 5HT increased peak I(Na) and the activation and inactivation rate, without significantly affecting the voltage dependency of activation or availability. Studies on the voltage dependency of channel availability, time course of removal of inactivation, and inactivation of evoked Na(+) currents suggested that there are at least two inactivation states of the Na(+) channel, one (I(fast)) that is induced and retrieved faster than the other (I(slow)). Long (1 s), but not short (60 or 100 ms), inactivating conditioning pulses (CPs) suppressed the 5HT-induced increase in I(Na). Computer modeling studies suggest that 5HT increased I(Na) mainly by decreasing the transition rate (k(OI1)) from an open state to I(fast). Furthermore, 5HT increased I(Na) activation and inactivation rates mainly by increasing the transition rate from closed to open (k(C3O)) and from I(fast) to I(slow) (k(I1I2)), respectively. The antagonism of the 5HT-induced increase in I(Na) by 1-s inactivation CPs may be due an enhancement of transitions from I(fast) to I(slow), via the increase in k(I1I2). This may deplete the pool of channels residing in I(fast), reducing the frequency of reopenings from I(fast), which offsets the increase in I(Na) produced by the reduction in k(OI1). The above findings fit well with previous studies showing that activation of the cAMP/PKA cascade simultaneously increases voltage sensitive tetrodotoxin-resistant Na(+) conductance and inactivation rate in nociceptors. The antagonism of the effects of 5HT by long inactivation CPs suggests that drugs designed to induce and/or stabilize the I(slow) state might be useful for reducing hyperalgesia produced by inflammatory mediators.
Full Text
The Full Text of this article is available as a PDF (349.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akopian A. N., Sivilotti L., Wood J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996 Jan 18;379(6562):257–262. doi: 10.1038/379257a0. [DOI] [PubMed] [Google Scholar]
- Cardenas C. G., Del Mar L. P., Cooper B. Y., Scroggs R. S. 5HT4 receptors couple positively to tetrodotoxin-insensitive sodium channels in a subpopulation of capsaicin-sensitive rat sensory neurons. J Neurosci. 1997 Oct 1;17(19):7181–7189. doi: 10.1523/JNEUROSCI.17-19-07181.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cardenas C. G., Del Mar L. P., Scroggs R. S. Variation in serotonergic inhibition of calcium channel currents in four types of rat sensory neurons differentiated by membrane properties. J Neurophysiol. 1995 Nov;74(5):1870–1879. doi: 10.1152/jn.1995.74.5.1870. [DOI] [PubMed] [Google Scholar]
- Cardenas L. M., Cardenas C. G., Scroggs R. S. 5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na(+) channels. J Neurophysiol. 2001 Jul;86(1):241–248. doi: 10.1152/jn.2001.86.1.241. [DOI] [PubMed] [Google Scholar]
- Del Mar L. P., Scroggs R. S. Lactoseries carbohydrate antigen, Gal beta 1-4GlcNAc-R, is expressed by a subpopulation of capsaicin-sensitive rat sensory neurons. J Neurophysiol. 1996 Oct;76(4):2192–2199. doi: 10.1152/jn.1996.76.4.2192. [DOI] [PubMed] [Google Scholar]
- Dodd J., Jessell T. M. Lactoseries carbohydrates specify subsets of dorsal root ganglion neurons projecting to the superficial dorsal horn of rat spinal cord. J Neurosci. 1985 Dec;5(12):3278–3294. doi: 10.1523/JNEUROSCI.05-12-03278.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- England S., Bevan S., Docherty R. J. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol. 1996 Sep 1;495(Pt 2):429–440. doi: 10.1113/jphysiol.1996.sp021604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandez J. M., Fox A. P., Krasne S. Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells. J Physiol. 1984 Nov;356:565–585. doi: 10.1113/jphysiol.1984.sp015483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzgerald E. M., Okuse K., Wood J. N., Dolphin A. C., Moss S. J. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J Physiol. 1999 Apr 15;516(Pt 2):433–446. doi: 10.1111/j.1469-7793.1999.0433v.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold M. S., Levine J. D., Correa A. M. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci. 1998 Dec 15;18(24):10345–10355. doi: 10.1523/JNEUROSCI.18-24-10345.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold M. S., Reichling D. B., Shuster M. J., Levine J. D. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1108–1112. doi: 10.1073/pnas.93.3.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman L. Sodium channel inactivation from closed states: evidence for an intrinsic voltage dependency. Biophys J. 1995 Dec;69(6):2369–2377. doi: 10.1016/S0006-3495(95)80106-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harper A. A., Lawson S. N. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J Physiol. 1985 Feb;359:31–46. doi: 10.1113/jphysiol.1985.sp015573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harper A. A., Lawson S. N. Electrical properties of rat dorsal root ganglion neurones with different peripheral nerve conduction velocities. J Physiol. 1985 Feb;359:47–63. doi: 10.1113/jphysiol.1985.sp015574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev. 1991 Jun;43(2):143–201. [PubMed] [Google Scholar]
- Light A. R., Perl E. R. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol. 1979 Jul 15;186(2):117–131. doi: 10.1002/cne.901860202. [DOI] [PubMed] [Google Scholar]
- Light A. R., Perl E. R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol. 1979 Jul 15;186(2):133–150. doi: 10.1002/cne.901860203. [DOI] [PubMed] [Google Scholar]
- Roy M. L., Narahashi T. Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci. 1992 Jun;12(6):2104–2111. doi: 10.1523/JNEUROSCI.12-06-02104.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rush A. M., Bräu M. E., Elliott A. A., Elliott J. R. Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia. J Physiol. 1998 Sep 15;511(Pt 3):771–789. doi: 10.1111/j.1469-7793.1998.771bg.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scroggs R. S., Fox A. P. Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol. 1992 Jan;445:639–658. doi: 10.1113/jphysiol.1992.sp018944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taiwo Y. O., Heller P. H., Levine J. D. Mediation of serotonin hyperalgesia by the cAMP second messenger system. Neuroscience. 1992;48(2):479–483. doi: 10.1016/0306-4522(92)90507-x. [DOI] [PubMed] [Google Scholar]
- Taiwo Y. O., Levine J. D. Serotonin is a directly-acting hyperalgesic agent in the rat. Neuroscience. 1992;48(2):485–490. doi: 10.1016/0306-4522(92)90508-y. [DOI] [PubMed] [Google Scholar]
- Vandenberg C. A., Bezanilla F. A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys J. 1991 Dec;60(6):1511–1533. doi: 10.1016/S0006-3495(91)82186-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villière V., McLachlan E. M. Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. J Neurophysiol. 1996 Sep;76(3):1924–1941. doi: 10.1152/jn.1996.76.3.1924. [DOI] [PubMed] [Google Scholar]
- Yakehiro M., Yuki T., Yamaoka K., Furue T., Mori Y., Imoto K., Seyama I. An analysis of the variations in potency of grayanotoxin analogs in modifying frog sodium channels of differing subtypes. Mol Pharmacol. 2000 Oct;58(4):692–700. doi: 10.1124/mol.58.4.692. [DOI] [PubMed] [Google Scholar]
- d'Alcantara P., Schiffmann S. N., Swillens S. Effect of protein kinase A-induced phosphorylation on the gating mechanism of the brain Na+ channel: model fitting to whole-cell current traces. Biophys J. 1999 Jul;77(1):204–216. doi: 10.1016/S0006-3495(99)76882-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
