Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):87–97. doi: 10.1016/S0006-3495(02)75151-5

Stochastic properties of Ca(2+) release of inositol 1,4,5-trisphosphate receptor clusters.

Jian-Wei Shuai 1, Peter Jung 1
PMCID: PMC1302129  PMID: 12080102

Abstract

Intracellular Ca(2+) release is controlled by inositol 1,4,5-trisphosphate (IP(3)) receptors or ryanodine receptors. These receptors are typically distributed in clusters with several or tens of channels. The random opening and closing of these channels introduces stochasticity into the elementary calcium release mechanism. Stochastic release events have been experimentally observed in a variety of cell types and have been termed sparks and puffs. We put forward a stochastic version of the Li-Rinzel model (the deactivation binding process is described by a Markovian scheme) and a computationally more efficient Langevin approach to model the stochastic Ca(2+) oscillation of single clusters. Statistical properties such as Ca(2+) puff amplitudes, lifetimes, and interpuff intervals are studied with both models and compared with experimental observations. For clusters with tens of channels, a simply decaying amplitude distribution is typically observed at low IP(3) concentration, while a single peak distribution appears at high IP(3) concentration.

Full Text

The Full Text of this article is available as a PDF (216.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. J., Chu S. P., Schumacher K., Shimazaki C. T., Vafeados D., Kemper A., Hawke S. D., Tallman G., Tsien R. Y., Harper J. F. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science. 2000 Sep 29;289(5488):2338–2342. doi: 10.1126/science.289.5488.2338. [DOI] [PubMed] [Google Scholar]
  2. Bertram R., Smith G. D., Sherman A. Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release. Biophys J. 1999 Feb;76(2):735–750. doi: 10.1016/S0006-3495(99)77240-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  4. Bootman M., Niggli E., Berridge M., Lipp P. Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol. 1997 Mar 1;499(Pt 2):307–314. doi: 10.1113/jphysiol.1997.sp021928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bär M., Falcke M., Levine H., Tsimring L. S. Discrete stochastic modeling of calcium channel dynamics. Phys Rev Lett. 2000 Jun 12;84(24):5664–5667. doi: 10.1103/PhysRevLett.84.5664. [DOI] [PubMed] [Google Scholar]
  6. Callamaras N., Marchant J. S., Sun X. P., Parker I. Activation and co-ordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J Physiol. 1998 May 15;509(Pt 1):81–91. doi: 10.1111/j.1469-7793.1998.081bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Callamaras N., Parker I. Phasic characteristic of elementary Ca(2+) release sites underlies quantal responses to IP(3). EMBO J. 2000 Jul 17;19(14):3608–3617. doi: 10.1093/emboj/19.14.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
  9. Cheng H., Song L. S., Shirokova N., González A., Lakatta E. G., Ríos E., Stern M. D. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys J. 1999 Feb;76(2):606–617. doi: 10.1016/S0006-3495(99)77229-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., Smith S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990 Jan 26;247(4941):470–473. doi: 10.1126/science.1967852. [DOI] [PubMed] [Google Scholar]
  11. Dawson S. P., Keizer J., Pearson J. E. Fire-diffuse-fire model of dynamics of intracellular calcium waves. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6060–6063. doi: 10.1073/pnas.96.11.6060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Koninck P., Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 1998 Jan 9;279(5348):227–230. doi: 10.1126/science.279.5348.227. [DOI] [PubMed] [Google Scholar]
  13. De Young G. W., Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9895–9899. doi: 10.1073/pnas.89.20.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Falcke M., Tsimring L., Levine H. Stochastic spreading of intracellular Ca(2+) release. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Aug;62(2 Pt B):2636–2643. doi: 10.1103/physreve.62.2636. [DOI] [PubMed] [Google Scholar]
  15. Fox R. F. Stochastic versions of the Hodgkin-Huxley equations. Biophys J. 1997 May;72(5):2068–2074. doi: 10.1016/S0006-3495(97)78850-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fox RF, Lu Yn. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Apr;49(4):3421–3431. doi: 10.1103/physreve.49.3421. [DOI] [PubMed] [Google Scholar]
  17. Golovina V. A., Blaustein M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997 Mar 14;275(5306):1643–1648. doi: 10.1126/science.275.5306.1643. [DOI] [PubMed] [Google Scholar]
  18. González A., Kirsch W. G., Shirokova N., Pizarro G., Brum G., Pessah I. N., Stern M. D., Cheng H., Ríos E. Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4380–4385. doi: 10.1073/pnas.070056497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Haak L. L., Song L. S., Molinski T. F., Pessah I. N., Cheng H., Russell J. T. Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J Neurosci. 2001 Jun 1;21(11):3860–3870. doi: 10.1523/JNEUROSCI.21-11-03860.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harris-White M. E., Zanotti S. A., Frautschy S. A., Charles A. C. Spiral intercellular calcium waves in hippocampal slice cultures. J Neurophysiol. 1998 Feb;79(2):1045–1052. doi: 10.1152/jn.1998.79.2.1045. [DOI] [PubMed] [Google Scholar]
  21. Horne J. H., Meyer T. Elementary calcium-release units induced by inositol trisphosphate. Science. 1997 Jun 13;276(5319):1690–1693. doi: 10.1126/science.276.5319.1690. [DOI] [PubMed] [Google Scholar]
  22. Izu L. T., Wier W. G., Balke C. W. Theoretical analysis of the Ca2+ spark amplitude distribution. Biophys J. 1998 Sep;75(3):1144–1162. doi: 10.1016/s0006-3495(98)74034-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jiang Y. H., Klein M. G., Schneider M. F. Numerical simulation of Ca2+ "sparks" in skeletal muscle. Biophys J. 1999 Nov;77(5):2333–2357. doi: 10.1016/s0006-3495(99)77072-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keizer J., Smith G. D., Ponce-Dawson S., Pearson J. E. Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys J. 1998 Aug;75(2):595–600. doi: 10.1016/S0006-3495(98)77550-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Keizer J., Smith G. D. Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes. Biophys Chem. 1998 May 5;72(1-2):87–100. doi: 10.1016/s0301-4622(98)00125-2. [DOI] [PubMed] [Google Scholar]
  26. Li Y. X., Rinzel J. Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol. 1994 Feb 21;166(4):461–473. doi: 10.1006/jtbi.1994.1041. [DOI] [PubMed] [Google Scholar]
  27. Lipp P., Niggli E. Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes. J Physiol. 1998 May 1;508(Pt 3):801–809. doi: 10.1111/j.1469-7793.1998.801bp.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mak D. O., Foskett J. K. Single-channel kinetics, inactivation, and spatial distribution of inositol trisphosphate (IP3) receptors in Xenopus oocyte nucleus. J Gen Physiol. 1997 May;109(5):571–587. doi: 10.1085/jgp.109.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mak D. O., McBride S., Foskett J. K. ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating: kinetic implications for the durations of calcium puffs in cells. J Gen Physiol. 2001 Apr;117(4):299–314. doi: 10.1085/jgp.117.4.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marchant J. S., Parker I. Role of elementary Ca(2+) puffs in generating repetitive Ca(2+) oscillations. EMBO J. 2001 Jan 15;20(1-2):65–76. doi: 10.1093/emboj/20.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marchant J., Callamaras N., Parker I. Initiation of IP(3)-mediated Ca(2+) waves in Xenopus oocytes. EMBO J. 1999 Oct 1;18(19):5285–5299. doi: 10.1093/emboj/18.19.5285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Melamed-Book N., Kachalsky S. G., Kaiserman I., Rahamimoff R. Neuronal calcium sparks and intracellular calcium "noise". Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15217–15221. doi: 10.1073/pnas.96.26.15217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moraru I. I., Kaftan E. J., Ehrlich B. E., Watras J. Regulation of type 1 inositol 1,4,5-trisphosphate-gated calcium channels by InsP3 and calcium: Simulation of single channel kinetics based on ligand binding and electrophysiological analysis. J Gen Physiol. 1999 Jun;113(6):837–849. doi: 10.1085/jgp.113.6.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Newman E. A., Zahs K. R. Calcium waves in retinal glial cells. Science. 1997 Feb 7;275(5301):844–847. doi: 10.1126/science.275.5301.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pratusevich V. R., Balke C. W. Factors shaping the confocal image of the calcium spark in cardiac muscle cells. Biophys J. 1996 Dec;71(6):2942–2957. doi: 10.1016/S0006-3495(96)79525-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roberts W. M. Spatial calcium buffering in saccular hair cells. Nature. 1993 May 6;363(6424):74–76. doi: 10.1038/363074a0. [DOI] [PubMed] [Google Scholar]
  37. Ríos E., Shirokova N., Kirsch W. G., Pizarro G., Stern M. D., Cheng H., González A. A preferred amplitude of calcium sparks in skeletal muscle. Biophys J. 2001 Jan;80(1):169–183. doi: 10.1016/S0006-3495(01)76005-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith G. D., Keizer J. E., Stern M. D., Lederer W. J., Cheng H. A simple numerical model of calcium spark formation and detection in cardiac myocytes. Biophys J. 1998 Jul;75(1):15–32. doi: 10.1016/S0006-3495(98)77491-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sun X. P., Callamaras N., Marchant J. S., Parker I. A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J Physiol. 1998 May 15;509(Pt 1):67–80. doi: 10.1111/j.1469-7793.1998.067bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Swillens S., Dupont G., Combettes L., Champeil P. From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13750–13755. doi: 10.1073/pnas.96.24.13750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thomas D., Lipp P., Berridge M. J., Bootman M. D. Hormone-evoked elementary Ca2+ signals are not stereotypic, but reflect activation of different size channel clusters and variable recruitment of channels within a cluster. J Biol Chem. 1998 Oct 16;273(42):27130–27136. doi: 10.1074/jbc.273.42.27130. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES