Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):98–111. doi: 10.1016/S0006-3495(02)75152-7

Orientation and conformation of a lipase at an interface studied by molecular dynamics simulations.

Morten Ø Jensen 1, Torben R Jensen 1, Kristian Kjaer 1, Thomas Bjørnholm 1, Ole G Mouritsen 1, Günther H Peters 1
PMCID: PMC1302130  PMID: 12080103

Abstract

Electron density profiles calculated from molecular dynamics trajectories are used to deduce the orientation and conformation of Thermomyces lanuginosa lipase and a mutant adsorbed at an air-water interface. It is demonstrated that the profiles display distinct fine structures, which uniquely characterize enzyme orientation and conformation. The density profiles are, on the nanosecond timescale, determined by the average enzyme conformation. We outline a computational scheme that from a single molecular dynamics trajectory allows for extraction of electron density profiles referring to different orientations of the lipase relative to an implicit interface. Profiles calculated for the inactive and active conformations of the lipase are compared with experimental electron density profiles measured by x-ray reflectivity for the lipase adsorbed at an air-water interface. The experimental profiles contain less fine structural information than the calculated profiles because the resolution of the experiment is limited by the intrinsic surface roughness of water. Least squares fits of the calculated profiles to the experimental profiles provide areas per adsorbed enzyme and suggest that Thermomyces lanuginosa lipase adsorbs to the air-water interface in a semiopen conformation with the lid oriented away from the interface.

Full Text

The Full Text of this article is available as a PDF (858.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball A., Nielsen R., Gelb M. H., Robinson B. H. Interfacial membrane docking of cytosolic phospholipase A2 C2 domain using electrostatic potential-modulated spin relaxation magnetic resonance. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6637–6642. doi: 10.1073/pnas.96.12.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 1990 Feb 22;343(6260):767–770. doi: 10.1038/343767a0. [DOI] [PubMed] [Google Scholar]
  4. Braslau A, Deutsch M, Pershan PS, Weiss AH, Als-Nielsen J, Bohr J. Surface roughness of water measured by x-ray refelctivity. Phys Rev Lett. 1985 Jan 14;54(2):114–117. doi: 10.1103/PhysRevLett.54.114. [DOI] [PubMed] [Google Scholar]
  5. Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., Bjorkling F., Huge-Jensen B., Patkar S. A., Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991 Jun 6;351(6326):491–494. doi: 10.1038/351491a0. [DOI] [PubMed] [Google Scholar]
  6. Brzozowski A. M., Savage H., Verma C. S., Turkenburg J. P., Lawson D. M., Svendsen A., Patkar S. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. 2000 Dec 12;39(49):15071–15082. doi: 10.1021/bi0013905. [DOI] [PubMed] [Google Scholar]
  7. Cajal Y., Svendsen A., Girona V., Patkar S. A., Alsina M. A. Interfacial control of lid opening in Thermomyces lanuginosa lipase. Biochemistry. 2000 Jan 18;39(2):413–423. doi: 10.1021/bi991927i. [DOI] [PubMed] [Google Scholar]
  8. Derewenda U., Brzozowski A. M., Lawson D. M., Derewenda Z. S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry. 1992 Feb 11;31(5):1532–1541. doi: 10.1021/bi00120a034. [DOI] [PubMed] [Google Scholar]
  9. Derewenda U., Swenson L., Wei Y., Green R., Kobos P. M., Joerger R., Haas M. J., Derewenda Z. S. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar. J Lipid Res. 1994 Mar;35(3):524–534. [PubMed] [Google Scholar]
  10. Grochulski P., Li Y., Schrag J. D., Bouthillier F., Smith P., Harrison D., Rubin B., Cygler M. Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem. 1993 Jun 15;268(17):12843–12847. [PubMed] [Google Scholar]
  11. Jensen T. R., Balashev K., Bjørnholm T., Kjaer K. Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part II. Surface sensitive synchrotron X-ray scattering. Biochimie. 2001 May;83(5):399–408. doi: 10.1016/s0300-9084(01)01265-2. [DOI] [PubMed] [Google Scholar]
  12. Jutila A., Zhu K., Patkar S. A., Vind J., Svendsen A., Kinnunen P. K. Detergent-induced conformational changes of Humicola lanuginosa lipase studied by fluorescence spectroscopy. Biophys J. 2000 Mar;78(3):1634–1642. doi: 10.1016/S0006-3495(00)76715-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Millar D. P. Fluorescence studies of DNA and RNA structure and dynamics. Curr Opin Struct Biol. 1996 Jun;6(3):322–326. doi: 10.1016/s0959-440x(96)80050-9. [DOI] [PubMed] [Google Scholar]
  14. Peters G. H., Svendsen A., Langberg H., Vind J., Patkar S. A., Toxvaerd S., Kinnunen P. K. Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. Biochemistry. 1998 Sep 8;37(36):12375–12383. doi: 10.1021/bi972883l. [DOI] [PubMed] [Google Scholar]
  15. Peters G. H., Toxvaerd S., Larsen N. B., Bjørnholm T., Schaumburg K., Kjaer K. Structure and dynamics of lipid monolayers: implications for enzyme catalysed lipolysis. Nat Struct Biol. 1995 May;2(5):395–401. doi: 10.1038/nsb0595-395. [DOI] [PubMed] [Google Scholar]
  16. Peters G. H., van Aalten D. M., Edholm O., Toxvaerd S., Bywater R. Dynamics of proteins in different solvent systems: analysis of essential motion in lipases. Biophys J. 1996 Nov;71(5):2245–2255. doi: 10.1016/S0006-3495(96)79428-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peters G. H., van Aalten D. M., Svendsen A., Bywater R. Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length. Protein Eng. 1997 Feb;10(2):149–158. doi: 10.1093/protein/10.2.149. [DOI] [PubMed] [Google Scholar]
  18. Ransac S., Gargouri Y., Moreau H., Verger R. Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1,2-didecanoyl-sn-glycerol monolayers. Eur J Biochem. 1991 Dec 5;202(2):395–400. doi: 10.1111/j.1432-1033.1991.tb16387.x. [DOI] [PubMed] [Google Scholar]
  19. Ransac S., Rivière C., Soulié J. M., Gancet C., Verger R., de Haas G. H. Competitive inhibition of lipolytic enzymes. I. A kinetic model applicable to water-insoluble competitive inhibitors. Biochim Biophys Acta. 1990 Mar 12;1043(1):57–66. doi: 10.1016/0005-2760(90)90110-j. [DOI] [PubMed] [Google Scholar]
  20. Thuren T. A model for the molecular mechanism of interfacial activation of phospholipase A2 supporting the substrate theory. FEBS Lett. 1988 Feb 29;229(1):95–99. doi: 10.1016/0014-5793(88)80805-6. [DOI] [PubMed] [Google Scholar]
  21. Verger R., De Haas G. H. Enzyme reactions in a membrane model. 1. A new technique to study enzyme reactions in monolayers. Chem Phys Lipids. 1973 Feb;10(2):127–136. doi: 10.1016/0009-3084(73)90009-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES