Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):112–124. doi: 10.1016/S0006-3495(02)75153-9

Molecular dynamics study of the folding of hydrophobin SC3 at a hydrophilic/hydrophobic interface.

Ronen Zangi 1, Marcel L de Vocht 1, George T Robillard 1, Alan E Mark 1
PMCID: PMC1302131  PMID: 12080104

Abstract

Hydrophobins are fungal proteins that self-assemble at hydrophilic/hydrophobic interfaces into amphipathic membranes. These assemblages are extremely stable and posses the remarkable ability to invert the polarity of the surface on which they are adsorbed. Neither the three-dimensional structure of a hydrophobin nor the mechanism by which they function is known. Nevertheless, there are experimental indications that the self-assembled form of the hydrophobins SC3 and EAS at a water/air interface is rich with beta-sheet secondary structure. In this paper we report results from molecular dynamics simulations, showing that fully extended SC3 undergoes fast (approximately 100 ns) folding at a water/hexane interface to an elongated planar structure with extensive beta-sheet secondary elements. Simulations in each of the bulk solvents result in a mainly unstructured globular protein. The dramatic enhancement in secondary structure, whether kinetic or thermodynamic in origin, highlights the role interfaces between phases with large differences in polarity can have on folding. The partitioning of the residue side-chains to one of the two phases can serve as a strong driving force to initiate secondary structure formation. The interactions of the side-chains with the environment at an interface can also stabilize configurations that otherwise would not occur in a homogenous solution.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baber J., Ellena J. F., Cafiso D. S. Distribution of general anesthetics in phospholipid bilayers determined using 2H NMR and 1H-1H NOE spectroscopy. Biochemistry. 1995 May 16;34(19):6533–6539. doi: 10.1021/bi00019a035. [DOI] [PubMed] [Google Scholar]
  2. Bechinger B. Towards membrane protein design: pH-sensitive topology of histidine-containing polypeptides. J Mol Biol. 1996 Nov 15;263(5):768–775. doi: 10.1006/jmbi.1996.0614. [DOI] [PubMed] [Google Scholar]
  3. Bechinger B., Zasloff M., Opella S. J. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. Biophys J. 1998 Feb;74(2 Pt 1):981–987. doi: 10.1016/S0006-3495(98)74021-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bechinger B., Zasloff M., Opella S. J. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 1993 Dec;2(12):2077–2084. doi: 10.1002/pro.5560021208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biggin P. C., Sansom M. S. Simulation of voltage-dependent interactions of alpha-helical peptides with lipid bilayers. Biophys Chem. 1996 Jun 11;60(3):99–110. doi: 10.1016/0301-4622(96)00015-4. [DOI] [PubMed] [Google Scholar]
  7. Blondelle S. E., Ostresh J. M., Houghten R. A., Pérez-Payá E. Induced conformational states of amphipathic peptides in aqueous/lipid environments. Biophys J. 1995 Jan;68(1):351–359. doi: 10.1016/S0006-3495(95)80194-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cajal Y., Rabanal F., Alsina M. A., Reig F. A fluorescence and CD study on the interaction of synthetic lipophilic hepatitis B virus preS(120-145) peptide analogues with phospholipid vesicles. Biopolymers. 1996 May;38(5):607–618. doi: 10.1002/(sici)1097-0282(199605)38:5<607::aid-bip6>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  9. Chernomordik L., Chanturiya A. N., Suss-Toby E., Nora E., Zimmerberg J. An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J Virol. 1994 Nov;68(11):7115–7123. doi: 10.1128/jvi.68.11.7115-7123.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chipot C., Maigret B., Pohorille A. Early events in the folding of an amphipathic peptide: A multinanosecond molecular dynamics study. Proteins. 1999 Sep 1;36(4):383–399. [PubMed] [Google Scholar]
  11. Chipot C., Pohorille A. Conformational equilibria of terminally blocked single amino acids at the water-hexane interface. A molecular dynamics study. J Phys Chem B. 1998 Jan 1;102(1):281–290. doi: 10.1021/jp970938n. [DOI] [PubMed] [Google Scholar]
  12. Chipot C., Pohorille A. Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study. J Am Chem Soc. 1998 Nov 25;120(46):11912–11924. doi: 10.1021/ja980010o. [DOI] [PubMed] [Google Scholar]
  13. Chipot C., Wilson M. A., Pohorille A. Interactions of anesthetics with the water-hexane interface. A molecular dynamics study. J Phys Chem B. 1997 Jan 30;101(5):782–791. doi: 10.1021/jp961513o. [DOI] [PubMed] [Google Scholar]
  14. Chung L. A., Lear J. D., DeGrado W. F. Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry. 1992 Jul 21;31(28):6608–6616. doi: 10.1021/bi00143a035. [DOI] [PubMed] [Google Scholar]
  15. Cornut I., Desbat B., Turlet J. M., Dufourcq J. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface. Biophys J. 1996 Jan;70(1):305–312. doi: 10.1016/S0006-3495(96)79571-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Damodaran K. V., Merz K. M., Jr, Gaber B. P. Interaction of small peptides with lipid bilayers. Biophys J. 1995 Oct;69(4):1299–1308. doi: 10.1016/S0006-3495(95)79997-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eisenberg D., Weiss R. M., Terwilliger T. C. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature. 1982 Sep 23;299(5881):371–374. doi: 10.1038/299371a0. [DOI] [PubMed] [Google Scholar]
  18. Ishiguro R., Kimura N., Takahashi S. Orientation of fusion-active synthetic peptides in phospholipid bilayers: determination by Fourier transform infrared spectroscopy. Biochemistry. 1993 Sep 21;32(37):9792–9797. doi: 10.1021/bi00088a034. [DOI] [PubMed] [Google Scholar]
  19. Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
  20. Johnson J. E., Rao N. M., Hui S. W., Cornell R. B. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Biochemistry. 1998 Jun 30;37(26):9509–9519. doi: 10.1021/bi980340l. [DOI] [PubMed] [Google Scholar]
  21. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  22. Kaiser E. T., Kézdy F. J. Peptides with affinity for membranes. Annu Rev Biophys Biophys Chem. 1987;16:561–581. doi: 10.1146/annurev.bb.16.060187.003021. [DOI] [PubMed] [Google Scholar]
  23. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  24. Mackay J. P., Matthews J. M., Winefield R. D., Mackay L. G., Haverkamp R. G., Templeton M. D. The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure. 2001 Feb 7;9(2):83–91. doi: 10.1016/s0969-2126(00)00559-1. [DOI] [PubMed] [Google Scholar]
  25. North C., Cafiso D. S. Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys J. 1997 Apr;72(4):1754–1761. doi: 10.1016/S0006-3495(97)78821-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pohorille A., Wilson M. A. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces. J Chem Phys. 1996 Mar 8;104(10):3760–3773. doi: 10.1063/1.471030. [DOI] [PubMed] [Google Scholar]
  27. Pérez-Payá E., Dufourcq J., Braco L., Abad C. Structural characterisation of the natural membrane-bound state of melittin: a fluorescence study of a dansylated analogue. Biochim Biophys Acta. 1997 Oct 23;1329(2):223–236. doi: 10.1016/s0005-2736(97)00112-0. [DOI] [PubMed] [Google Scholar]
  28. Russell C. J., King D. S., Thorgeirsson T. E., Shin Y. K. De novo design of a peptide which partitions between water and phospholipid bilayers as a monomeric alpha-helix. Protein Eng. 1998 Jul;11(7):539–547. doi: 10.1093/protein/11.7.539. [DOI] [PubMed] [Google Scholar]
  29. Schladitz C., Vieira E. P., Hermel H., Möhwald H. Amyloid-beta-sheet formation at the air-water interface. Biophys J. 1999 Dec;77(6):3305–3310. doi: 10.1016/S0006-3495(99)77161-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Segrest J. P., Garber D. W., Brouillette C. G., Harvey S. C., Anantharamaiah G. M. The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem. 1994;45:303–369. doi: 10.1016/s0065-3233(08)60643-9. [DOI] [PubMed] [Google Scholar]
  31. Takahashi S. Conformation of membrane fusion-active 20-residue peptides with or without lipid bilayers. Implication of alpha-helix formation for membrane fusion. Biochemistry. 1990 Jul 3;29(26):6257–6264. doi: 10.1021/bi00478a021. [DOI] [PubMed] [Google Scholar]
  32. Talbot N. J., Kershaw M. J., Wakley G. E., De Vries OMH., Wessels JGH., Hamer J. E. MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Plant Cell. 1996 Jun;8(6):985–999. doi: 10.1105/tpc.8.6.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tamm L. K., Tomich J. M., Saier M. H., Jr Membrane incorporation and induction of secondary structure of synthetic peptides corresponding to the N-terminal signal sequences of the glucitol and mannitol permeases of Escherichia coli. J Biol Chem. 1989 Feb 15;264(5):2587–2592. [PubMed] [Google Scholar]
  34. Voglino L., McIntosh T. J., Simon S. A. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Biochemistry. 1998 Sep 1;37(35):12241–12252. doi: 10.1021/bi9805792. [DOI] [PubMed] [Google Scholar]
  35. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  36. Wessels J. G. Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol. 1997;38:1–45. doi: 10.1016/s0065-2911(08)60154-x. [DOI] [PubMed] [Google Scholar]
  37. Wessels JGH., De Vries OMH., Asgeirsdottir S. A., Schuren FHJ. Hydrophobin Genes Involved in Formation of Aerial Hyphae and Fruit Bodies in Schizophyllum. Plant Cell. 1991 Aug;3(8):793–799. doi: 10.1105/tpc.3.8.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wolfenden R., Andersson L., Cullis P. M., Southgate C. C. Affinities of amino acid side chains for solvent water. Biochemistry. 1981 Feb 17;20(4):849–855. doi: 10.1021/bi00507a030. [DOI] [PubMed] [Google Scholar]
  39. Wosten HAB., De Vries OMH., Wessels JGH. Interfacial Self-Assembly of a Fungal Hydrophobin into a Hydrophobic Rodlet Layer. Plant Cell. 1993 Nov;5(11):1567–1574. doi: 10.1105/tpc.5.11.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wu Y., He K., Ludtke S. J., Huang H. W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J. 1995 Jun;68(6):2361–2369. doi: 10.1016/S0006-3495(95)80418-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wösten H. A., Schuren F. H., Wessels J. G. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J. 1994 Dec 15;13(24):5848–5854. doi: 10.1002/j.1460-2075.1994.tb06929.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Xu Y., Tang P. Amphiphilic sites for general anesthetic action? Evidence from 129Xe-[1H] intermolecular nuclear Overhauser effects. Biochim Biophys Acta. 1997 Jan 14;1323(1):154–162. doi: 10.1016/s0005-2736(96)00184-8. [DOI] [PubMed] [Google Scholar]
  43. de Vocht M. L., Scholtmeijer K., van der Vegte E. W., de Vries O. M., Sonveaux N., Wösten H. A., Ruysschaert J. M., Hadziloannou G., Wessels J. G., Robillard G. T. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J. 1998 Apr;74(4):2059–2068. doi: 10.1016/s0006-3495(98)77912-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES