Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):135–143. doi: 10.1016/S0006-3495(02)75155-2

Membrane structure of the human immunodeficiency virus gp41 fusion domain by molecular dynamics simulation.

Shantaram Kamath 1, Tuck C Wong 1
PMCID: PMC1302133  PMID: 12080106

Abstract

The structures of the 16-residue fusion domain (or fusion peptide, FP) of the human immunodeficiency virus gp41 fusion protein, two of its mutants, and a shortened peptide (5-16) were studied by molecular dynamics simulation in an explicit palmitoyloleoylphosphoethanolamine bilayer. The simulations showed that the active wild-type FP inserts into the bilayer approximately 44 degrees +/- 6 degrees with respect to the bilayer normal, whereas the inactive V2E and L9R mutants and the inactive 5 to 16 fragment lie on the bilayer surface. This is the first demonstration by explicit molecular dynamics of the oblique insertion of the fusion domain into lipid bilayers, and provides correlation between the mode of insertion and the fusogenic activity of these peptides. The membrane structure of the wild-type FP is remarkably similar to that of the influenza HA(2) FP as determined by nuclear magnetic resonance and electron spin resistance power saturation. The secondary structures of the wild-type FP and the two inactive mutants are quite similar, indicating that the secondary structure of this fusion domain plays little or no role in affecting the fusogenic activity of the fusion peptide. The insertion of the wild-type FP increases the thickness of the interfacial area of the bilayer by disrupting the hydrocarbon chains and extending the interfacial area toward the head group region, an effect that was not observed in the inactive FPs.

Full Text

The Full Text of this article is available as a PDF (926.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbach C., Greenhalgh D. A., Khorana H. G., Hubbell W. L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1667–1671. doi: 10.1073/pnas.91.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bechor D., Ben-Tal N. Implicit solvent model studies of the interactions of the influenza hemagglutinin fusion peptide with lipid bilayers. Biophys J. 2001 Feb;80(2):643–655. doi: 10.1016/S0006-3495(01)76045-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan D. C., Fass D., Berger J. M., Kim P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997 Apr 18;89(2):263–273. doi: 10.1016/s0092-8674(00)80205-6. [DOI] [PubMed] [Google Scholar]
  4. Chang D. K., Cheng S. F., Chien W. J. The amino-terminal fusion domain peptide of human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate micelle primarily as a helix with a conserved glycine at the micelle-water interface. J Virol. 1997 Sep;71(9):6593–6602. doi: 10.1128/jvi.71.9.6593-6602.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G., Newman W. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996 Jun 28;85(7):1135–1148. doi: 10.1016/s0092-8674(00)81313-6. [DOI] [PubMed] [Google Scholar]
  6. Delahunty M. D., Rhee I., Freed E. O., Bonifacino J. S. Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: identification of critical glycine residues. Virology. 1996 Apr 1;218(1):94–102. doi: 10.1006/viro.1996.0169. [DOI] [PubMed] [Google Scholar]
  7. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996 Jun 28;85(7):1149–1158. doi: 10.1016/s0092-8674(00)81314-8. [DOI] [PubMed] [Google Scholar]
  8. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996 Jun 20;381(6584):667–673. doi: 10.1038/381667a0. [DOI] [PubMed] [Google Scholar]
  9. Efremov R. G., Nolde D. E., Volynsky P. E., Chernyavsky A. A., Dubovskii P. V., Arseniev A. S. Factors important for fusogenic activity of peptides: molecular modeling study of analogs of fusion peptide of influenza virus hemagglutinin. FEBS Lett. 1999 Nov 26;462(1-2):205–210. doi: 10.1016/s0014-5793(99)01505-7. [DOI] [PubMed] [Google Scholar]
  10. Freed E. O., Delwart E. L., Buchschacher G. L., Jr, Panganiban A. T. A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):70–74. doi: 10.1073/pnas.89.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Freed E. O., Myers D. J., Risser R. Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4650–4654. doi: 10.1073/pnas.87.12.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gallaher W. R. Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell. 1987 Jul 31;50(3):327–328. doi: 10.1016/0092-8674(87)90485-5. [DOI] [PubMed] [Google Scholar]
  13. Han X., Bushweller J. H., Cafiso D. S., Tamm L. K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol. 2001 Aug;8(8):715–720. doi: 10.1038/90434. [DOI] [PubMed] [Google Scholar]
  14. Kliger Y., Aharoni A., Rapaport D., Jones P., Blumenthal R., Shai Y. Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study. J Biol Chem. 1997 May 23;272(21):13496–13505. doi: 10.1074/jbc.272.21.13496. [DOI] [PubMed] [Google Scholar]
  15. Kowalski M., Potz J., Basiripour L., Dorfman T., Goh W. C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science. 1987 Sep 11;237(4820):1351–1355. doi: 10.1126/science.3629244. [DOI] [PubMed] [Google Scholar]
  16. Lasky L. A., Nakamura G., Smith D. H., Fennie C., Shimasaki C., Patzer E., Berman P., Gregory T., Capon D. J. Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell. 1987 Sep 11;50(6):975–985. doi: 10.1016/0092-8674(87)90524-1. [DOI] [PubMed] [Google Scholar]
  17. Lüneberg J., Martin I., Nüssler F., Ruysschaert J. M., Herrmann A. Structure and topology of the influenza virus fusion peptide in lipid bilayers. J Biol Chem. 1995 Nov 17;270(46):27606–27614. doi: 10.1074/jbc.270.46.27606. [DOI] [PubMed] [Google Scholar]
  18. Macosko J. C., Kim C. H., Shin Y. K. The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J Mol Biol. 1997 Apr 18;267(5):1139–1148. doi: 10.1006/jmbi.1997.0931. [DOI] [PubMed] [Google Scholar]
  19. Martin I., Defrise-Quertain F., Decroly E., Vandenbranden M., Brasseur R., Ruysschaert J. M. Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. Biochim Biophys Acta. 1993 Jan 18;1145(1):124–133. doi: 10.1016/0005-2736(93)90389-h. [DOI] [PubMed] [Google Scholar]
  20. Martin I., Defrise-Quertain F., Mandieau V., Nielsen N. M., Saermark T., Burny A., Brasseur R., Ruysschaert J. M., Vandenbranden M. Fusogenic activity of SIV (simian immunodeficiency virus) peptides located in the GP32 NH2 terminal domain. Biochem Biophys Res Commun. 1991 Mar 29;175(3):872–879. doi: 10.1016/0006-291x(91)91646-t. [DOI] [PubMed] [Google Scholar]
  21. Martin I., Dubois M. C., Defrise-Quertain F., Saermark T., Burny A., Brasseur R., Ruysschaert J. M. Correlation between fusogenicity of synthetic modified peptides corresponding to the NH2-terminal extremity of simian immunodeficiency virus gp32 and their mode of insertion into the lipid bilayer: an infrared spectroscopy study. J Virol. 1994 Feb;68(2):1139–1148. doi: 10.1128/jvi.68.2.1139-1148.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martin I., Schaal H., Scheid A., Ruysschaert J. M. Lipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined by its orientation in the lipid bilayer. J Virol. 1996 Jan;70(1):298–304. doi: 10.1128/jvi.70.1.298-304.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mobley P. W., Waring A. J., Sherman M. A., Gordon L. M. Membrane interactions of the synthetic N-terminal peptide of HIV-1 gp41 and its structural analogs. Biochim Biophys Acta. 1999 Apr 14;1418(1):1–18. doi: 10.1016/s0005-2736(99)00014-0. [DOI] [PubMed] [Google Scholar]
  24. Peisajovich S. G., Epand R. F., Pritsker M., Shai Y., Epand R. M. The polar region consecutive to the HIV fusion peptide participates in membrane fusion. Biochemistry. 2000 Feb 22;39(7):1826–1833. doi: 10.1021/bi991887i. [DOI] [PubMed] [Google Scholar]
  25. Pereira F. B., Goñi F. M., Nieva J. L. Liposome destabilization induced by the HIV-1 fusion peptide effect of a single amino acid substitution. FEBS Lett. 1995 Apr 3;362(2):243–246. doi: 10.1016/0014-5793(95)00257-a. [DOI] [PubMed] [Google Scholar]
  26. Pritsker M., Rucker J., Hoffman T. L., Doms R. W., Shai Y. Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. Biochemistry. 1999 Aug 31;38(35):11359–11371. doi: 10.1021/bi990232e. [DOI] [PubMed] [Google Scholar]
  27. Schaal H., Klein M., Gehrmann P., Adams O., Scheid A. Requirement of N-terminal amino acid residues of gp41 for human immunodeficiency virus type 1-mediated cell fusion. J Virol. 1995 Jun;69(6):3308–3314. doi: 10.1128/jvi.69.6.3308-3314.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schiffer M., Edmundson A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Veronese F. D., DeVico A. L., Copeland T. D., Oroszlan S., Gallo R. C., Sarngadharan M. G. Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene. Science. 1985 Sep 27;229(4720):1402–1405. doi: 10.1126/science.2994223. [DOI] [PubMed] [Google Scholar]
  30. Yang J., Gabrys C. M., Weliky D. P. Solid-state nuclear magnetic resonance evidence for an extended beta strand conformation of the membrane-bound HIV-1 fusion peptide. Biochemistry. 2001 Jul 10;40(27):8126–8137. doi: 10.1021/bi0100283. [DOI] [PubMed] [Google Scholar]
  31. Yang J., Parkanzky P. D., Khunte B. A., Canlas C. G., Yang R., Gabrys C. M., Weliky D. P. Solid state NMR measurements of conformation and conformational distributions in the membrane-bound HIV-1 fusion peptide. J Mol Graph Model. 2001;19(1):129–135. doi: 10.1016/s1093-3263(00)00128-5. [DOI] [PubMed] [Google Scholar]
  32. Zhou Z., Macosko J. C., Hughes D. W., Sayer B. G., Hawes J., Epand R. M. 15N NMR study of the ionization properties of the influenza virus fusion peptide in zwitterionic phospholipid dispersions. Biophys J. 2000 May;78(5):2418–2425. doi: 10.1016/S0006-3495(00)76785-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES