Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):172–183. doi: 10.1016/S0006-3495(02)75159-X

Water secretion associated with exocytosis in endocrine cells revealed by micro forcemetry and evanescent wave microscopy.

Takashi Tsuboi 1, Toshiteru Kikuta 1, Takashi Sakurai 1, Susumu Terakawa 1
PMCID: PMC1302137  PMID: 12080110

Abstract

It has been a long belief that release of substances from the cell to the extracellular milieu by exocytosis is completed by diffusion of the substances from secretory vesicles through the fusion pore. Involvement of any mechanical force that may be superposed on the diffusion to enhance the releasing process has not been elucidated to date. We tackled this problem in cultured bovine chromaffin cells using direct and sensitive methods: the laser-trap forcemetry and the evanescent-wave fluorescence microscopy. With a laser beam, we trapped a micro bead in the vicinity of a cell (with 1 microm of separation) and observed movements of the bead optically. Electrical stimulation of the cell induced many of rapid and transient movements of the bead in a direction away from the cell surface. Upon the same stimulation, secretory vesicles stained with a fluorescent probe, acridine orange, and excited under the evanescent field illumination, showed a flash-like response: a transient increase in fluorescence intensity associated with a diffuse cloud of brightness, followed by a complete disappearance. These mechanical and fluorescence transients indicate a directional flow of substances. Blockers of the Cl(-) channel suppressed the rates of both responses in a characteristic way but not exocytotic fusion itself. Immunocytochemical studies revealed the presence of Cl(-) and K(+) channels on the vesicle membranes. These results suggest that the externalization of hormones or transmitters upon exocytosis of vesicles is augmented by secretion of water from the vesicle membrane through the widened fusion pore, possibly modulating the rate and reach of the hormone or transmitter release and facilitating transport of the signal molecules in intercellular spaces.

Full Text

The Full Text of this article is available as a PDF (372.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley R. H., Brown D. M., Apps D. K., Phillips J. H. Evidence for a K+ channel in bovine chromaffin granule membranes: single-channel properties and possible bioenergetic significance. Eur Biophys J. 1994;23(4):263–275. doi: 10.1007/BF00213576. [DOI] [PubMed] [Google Scholar]
  2. Barg S., Renström E., Berggren P. O., Bertorello A., Bokvist K., Braun M., Eliasson L., Holmes W. E., Köhler M., Rorsman P. The stimulatory action of tolbutamide on Ca2+-dependent exocytosis in pancreatic beta cells is mediated by a 65-kDa mdr-like P-glycoprotein. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5539–5544. doi: 10.1073/pnas.96.10.5539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Best L., Brown P. D., Sheader E. A., Yates A. P. Selective inhibition of glucose-stimulated beta-cell activity by an anion channel inhibitor. J Membr Biol. 2000 Sep 15;177(2):169–175. doi: 10.1007/s002320001110. [DOI] [PubMed] [Google Scholar]
  4. Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brandt B. L., Hagiwara S., Kidokoro Y., Miyazaki S. Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol. 1976 Dec;263(3):417–439. doi: 10.1113/jphysiol.1976.sp011638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Breckenridge L. J., Almers W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1945–1949. doi: 10.1073/pnas.84.7.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown E. M., Pazoles C. J., Creutz C. E., Aurbach G. D., Pollard H. B. Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc Natl Acad Sci U S A. 1978 Feb;75(2):876–880. doi: 10.1073/pnas.75.2.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chow R. H., Klingauf J., Heinemann C., Zucker R. S., Neher E. Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron. 1996 Feb;16(2):369–376. doi: 10.1016/s0896-6273(00)80054-9. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein A., Zimmerberg J., Cohen F. S. Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. Annu Rev Physiol. 1986;48:163–174. doi: 10.1146/annurev.ph.48.030186.001115. [DOI] [PubMed] [Google Scholar]
  10. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  11. Grant N. J., Aunis D., Bader M. F. Morphology and secretory activity of digitonin- and alpha-toxin-permeabilized chromaffin cells. Neuroscience. 1987 Dec;23(3):1143–1155. doi: 10.1016/0306-4522(87)90188-6. [DOI] [PubMed] [Google Scholar]
  12. Kawasaki M., Uchida S., Monkawa T., Miyawaki A., Mikoshiba K., Marumo F., Sasaki S. Cloning and expression of a protein kinase C-regulated chloride channel abundantly expressed in rat brain neuronal cells. Neuron. 1994 Mar;12(3):597–604. doi: 10.1016/0896-6273(94)90215-1. [DOI] [PubMed] [Google Scholar]
  13. Kumamaru E., Sato M., Yoshida H., Ide T., Kasai M. pH-dependent fusion of synaptosomal membrane studied by fluorescence quenching method. Jpn J Physiol. 1999 Feb;49(1):19–25. doi: 10.2170/jjphysiol.49.19. [DOI] [PubMed] [Google Scholar]
  14. Llopis J., McCaffery J. M., Miyawaki A., Farquhar M. G., Tsien R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6803–6808. doi: 10.1073/pnas.95.12.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyamoto S., Fujime S. Regulation by Ca2+ of membrane elasticity of bovine chromaffin granules. FEBS Lett. 1988 Sep 26;238(1):67–70. doi: 10.1016/0014-5793(88)80226-6. [DOI] [PubMed] [Google Scholar]
  16. Ohara-Imaizumi Mica, Nakamichi Yoko, Tanaka Toshiaki, Ishida Hitoshi, Nagamatsu Shinya. Imaging exocytosis of single insulin secretory granules with evanescent wave microscopy: distinct behavior of granule motion in biphasic insulin release. J Biol Chem. 2001 Dec 21;277(6):3805–3808. doi: 10.1074/jbc.C100712200. [DOI] [PubMed] [Google Scholar]
  17. Oheim M., Loerke D., Stühmer W., Chow R. H. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J. 1998;27(2):83–98. doi: 10.1007/s002490050114. [DOI] [PubMed] [Google Scholar]
  18. Ornberg R. L., Furuya S., Goping G., Kuijpers G. A. Granule swelling in stimulated bovine adrenal chromaffin cells: regulation by internal granule pH. Cell Tissue Res. 1995 Jan;279(1):85–92. doi: 10.1007/BF00300694. [DOI] [PubMed] [Google Scholar]
  19. Pace C. S., Smith J. S. The role of chemiosmotic lysis in the exocytotic release of insulin. Endocrinology. 1983 Sep;113(3):964–969. doi: 10.1210/endo-113-3-964. [DOI] [PubMed] [Google Scholar]
  20. Pazoles C. J., Pollard H. B. Evidence for stimulation of anion transport in ATP-evoked transmitter release from isolated secretory vesicles. J Biol Chem. 1978 Jun 10;253(11):3962–3969. [PubMed] [Google Scholar]
  21. Pollard H. B., Pazoles C. J., Creutz C. E., Scott J. H., Zinder O., Hotchkiss A. An osmotic mechanism for exocytosis from dissociated chromaffin cells. J Biol Chem. 1984 Jan 25;259(2):1114–1121. [PubMed] [Google Scholar]
  22. Pollard H. B., Pazoles C. J., Creutz C. E., Zinder O. Role of intracellular proteins in the regulation of calcium action and transmitter release during exocytosis. Monogr Neural Sci. 1980;7:106–116. doi: 10.1159/000388818. [DOI] [PubMed] [Google Scholar]
  23. Pollard H. B., Tack-Goldman K., Pazoles C. J., Creutz C. E., Shulman N. R. Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5295–5299. doi: 10.1073/pnas.74.12.5295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmoranzer J., Goulian M., Axelrod D., Simon S. M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J Cell Biol. 2000 Apr 3;149(1):23–32. doi: 10.1083/jcb.149.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stanley E. F., Ehrenstein G. A model for exocytosis based on the opening of calcium-activated potassium channels in vesicles. Life Sci. 1985 Nov 25;37(21):1985–1995. doi: 10.1016/0024-3205(85)90029-3. [DOI] [PubMed] [Google Scholar]
  26. Steyer J. A., Horstmann H., Almers W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature. 1997 Jul 31;388(6641):474–478. doi: 10.1038/41329. [DOI] [PubMed] [Google Scholar]
  27. Terakawa S., Fan J. H., Kumakura K., Ohara-Imaizumi M. Quantitative analysis of exocytosis directly visualized in living chromaffin cells. Neurosci Lett. 1991 Feb 11;123(1):82–86. doi: 10.1016/0304-3940(91)90163-n. [DOI] [PubMed] [Google Scholar]
  28. Terakawa S., Manivannan S., Kumakura K. Evidence against the swelling hypothesis for initiation of exocytosis in terminals of chromaffin cell processes. J Physiol Paris. 1993;87(3):209–213. doi: 10.1016/0928-4257(93)90032-o. [DOI] [PubMed] [Google Scholar]
  29. Thirion S., Troadec J. D., Pivovarova N. B., Pagnotta S., Andrews S. B., Leapman R. D., Nicaise G. Stimulus-secretion coupling in neurohypophysial nerve endings: a role for intravesicular sodium? Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3206–3210. doi: 10.1073/pnas.96.6.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tokunaga M., Kitamura K., Saito K., Iwane A. H., Yanagida T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun. 1997 Jun 9;235(1):47–53. doi: 10.1006/bbrc.1997.6732. [DOI] [PubMed] [Google Scholar]
  31. Toomre D., Steyer J. A., Keller P., Almers W., Simons K. Fusion of constitutive membrane traffic with the cell surface observed by evanescent wave microscopy. J Cell Biol. 2000 Apr 3;149(1):33–40. doi: 10.1083/jcb.149.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Walsh K. B., Long K. J., Shen X. Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel. Br J Pharmacol. 1999 May;127(2):369–376. doi: 10.1038/sj.bjp.0702562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Warashina A. Changes in the size of isolated chromaffin granules in ATP-evoked catecholamine release. FEBS Lett. 1985 May 6;184(1):87–89. doi: 10.1016/0014-5793(85)80659-1. [DOI] [PubMed] [Google Scholar]
  34. Waymire J. C., Bennett W. F., Boehme R., Hankins L., Gilmer-Waymire K., Haycock J. W. Bovine adrenal chromaffin cells: high-yield purification and viability in suspension culture. J Neurosci Methods. 1983 Apr;7(4):329–351. doi: 10.1016/0165-0270(83)90026-2. [DOI] [PubMed] [Google Scholar]
  35. Winkler H. The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience. 1976;1(2):65–80. doi: 10.1016/0306-4522(76)90001-4. [DOI] [PubMed] [Google Scholar]
  36. Winkler H., Westhead E. The molecular organization of adrenal chromaffin granules. Neuroscience. 1980;5(11):1803–1823. doi: 10.1016/0306-4522(80)90031-7. [DOI] [PubMed] [Google Scholar]
  37. Xu T., Binz T., Niemann H., Neher E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci. 1998 Jul;1(3):192–200. doi: 10.1038/642. [DOI] [PubMed] [Google Scholar]
  38. Zimmerberg J., Curran M., Cohen F. S., Brodwick M. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1585–1589. doi: 10.1073/pnas.84.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES