Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):206–218. doi: 10.1016/S0006-3495(02)75162-X

Early fluorescence signals detect transitions at mammalian serotonin transporters.

Ming Li 1, Henry A Lester 1
PMCID: PMC1302140  PMID: 12080113

Abstract

The mammalian serotonin transporters rSERT or hSERT were expressed in oocytes and labeled with sulforhodamine-MTS. The endogenous Cys-109 residue contributes most of the signal, and the labeled transporter shows normal function. The SERT fluorescence decreases in the presence of 5-HT and also depends on the inorganic substrates of SERT. The fluorescence also increases with membrane depolarization. During voltage-jump experiments, fluorescence relaxations show little inactivation or history dependence. The fluorescence signal has a voltage dependence similar to that of the prepriming step of the previously described voltage-dependent transient current. However, the fluorescence relaxations are the fastest voltage-dependent events yet studied at SERT; their time constants of approximately 8-30 ms are severalfold faster than the prepriming or inactivation phases of the transient currents. These fluorescence signals are interpreted within the framework of the gate-lumen-gate model. The signals may monitor initial events at the outer gate.

Full Text

The Full Text of this article is available as a PDF (541.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins E. M., Barker E. L., Blakely R. D. Interactions of tryptamine derivatives with serotonin transporter species variants implicate transmembrane domain I in substrate recognition. Mol Pharmacol. 2001 Mar;59(3):514–523. doi: 10.1124/mol.59.3.514. [DOI] [PubMed] [Google Scholar]
  2. Barker E. L., Kimmel H. L., Blakely R. D. Chimeric human and rat serotonin transporters reveal domains involved in recognition of transporter ligands. Mol Pharmacol. 1994 Nov;46(5):799–807. [PubMed] [Google Scholar]
  3. Barker E. L., Moore K. R., Rakhshan F., Blakely R. D. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci. 1999 Jun 15;19(12):4705–4717. doi: 10.1523/JNEUROSCI.19-12-04705.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buck K. J., Amara S. G. Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12584–12588. doi: 10.1073/pnas.91.26.12584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cao Y., Li M., Mager S., Lester H. A. Amino acid residues that control pH modulation of transport-associated current in mammalian serotonin transporters. J Neurosci. 1998 Oct 1;18(19):7739–7749. doi: 10.1523/JNEUROSCI.18-19-07739.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cao Y., Mager S., Lester H. A. H+ permeation and pH regulation at a mammalian serotonin transporter. J Neurosci. 1997 Apr 1;17(7):2257–2266. doi: 10.1523/JNEUROSCI.17-07-02257.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cha A., Bezanilla F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron. 1997 Nov;19(5):1127–1140. doi: 10.1016/s0896-6273(00)80403-1. [DOI] [PubMed] [Google Scholar]
  8. Cha A., Bezanilla F. Structural implications of fluorescence quenching in the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):391–408. doi: 10.1085/jgp.112.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen J. G., Liu-Chen S., Rudnick G. Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J Biol Chem. 1998 May 15;273(20):12675–12681. doi: 10.1074/jbc.273.20.12675. [DOI] [PubMed] [Google Scholar]
  10. Chen J. G., Liu-Chen S., Rudnick G. External cysteine residues in the serotonin transporter. Biochemistry. 1997 Feb 11;36(6):1479–1486. doi: 10.1021/bi962256g. [DOI] [PubMed] [Google Scholar]
  11. Chen J. G., Sachpatzidis A., Rudnick G. The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. J Biol Chem. 1997 Nov 7;272(45):28321–28327. doi: 10.1074/jbc.272.45.28321. [DOI] [PubMed] [Google Scholar]
  12. Giros B., Wang Y. M., Suter S., McLeskey S. B., Pifl C., Caron M. G. Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J Biol Chem. 1994 Jun 10;269(23):15985–15988. [PubMed] [Google Scholar]
  13. Kamdar G., Penado K. M., Rudnick G., Stephan M. M. Functional role of critical stripe residues in transmembrane span 7 of the serotonin transporter. Effects of Na+, Li+, and methanethiosulfonate reagents. J Biol Chem. 2000 Oct 31;276(6):4038–4045. doi: 10.1074/jbc.M008483200. [DOI] [PubMed] [Google Scholar]
  14. Kitayama S., Shimada S., Xu H., Markham L., Donovan D. M., Uhl G. R. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7782–7785. doi: 10.1073/pnas.89.16.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee S. H., Chang M. Y., Lee K. H., Park B. S., Lee Y. S., Chin H. R., Lee Y. S. Importance of valine at position 152 for the substrate transport and 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane binding of dopamine transporter. Mol Pharmacol. 2000 May;57(5):883–889. [PubMed] [Google Scholar]
  16. Lester H. A., Cao Y., Mager S. Listening to neurotransmitter transporters. Neuron. 1996 Nov;17(5):807–810. doi: 10.1016/s0896-6273(00)80213-5. [DOI] [PubMed] [Google Scholar]
  17. Li M., Farley R. A., Lester H. A. An intermediate state of the gamma-aminobutyric acid transporter GAT1 revealed by simultaneous voltage clamp and fluorescence. J Gen Physiol. 2000 Apr;115(4):491–508. doi: 10.1085/jgp.115.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin F., Lester H. A., Mager S. Single-channel currents produced by the serotonin transporter and analysis of a mutation affecting ion permeation. Biophys J. 1996 Dec;71(6):3126–3135. doi: 10.1016/S0006-3495(96)79506-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Loo D. D., Hirayama B. A., Gallardo E. M., Lam J. T., Turk E., Wright E. M. Conformational changes couple Na+ and glucose transport. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7789–7794. doi: 10.1073/pnas.95.13.7789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mager S., Min C., Henry D. J., Chavkin C., Hoffman B. J., Davidson N., Lester H. A. Conducting states of a mammalian serotonin transporter. Neuron. 1994 Apr;12(4):845–859. doi: 10.1016/0896-6273(94)90337-9. [DOI] [PubMed] [Google Scholar]
  21. Mannuzzu L. M., Moronne M. M., Isacoff E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science. 1996 Jan 12;271(5246):213–216. doi: 10.1126/science.271.5246.213. [DOI] [PubMed] [Google Scholar]
  22. Ni Y. G., Chen J. G., Androutsellis-Theotokis A., Huang C. J., Moczydlowski E., Rudnick G. A lithium-induced conformational change in serotonin transporter alters cocaine binding, ion conductance, and reactivity of Cys-109. J Biol Chem. 2001 Jun 14;276(33):30942–30947. doi: 10.1074/jbc.M104653200. [DOI] [PubMed] [Google Scholar]
  23. Smicun Y., Campbell S. D., Chen M. A., Gu H., Rudnick G. The role of external loop regions in serotonin transport. Loop scanning mutagenesis of the serotonin transporter external domain. J Biol Chem. 1999 Dec 17;274(51):36058–36064. doi: 10.1074/jbc.274.51.36058. [DOI] [PubMed] [Google Scholar]
  24. Yu N., Cao Y., Mager S., Lester H. A. Topological localization of cysteine 74 in the GABA transporter, GAT1, and its importance in ion binding and permeation. FEBS Lett. 1998 Apr 17;426(2):174–178. doi: 10.1016/s0014-5793(98)00333-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES