Abstract
To evaluate the role of charged residues facing a pore lumen in stability of channel structure and ion permeation, we studied electrical properties of ion channels formed by synthesized native alamethicins (Rf50 (alm-Q7Q18) and Rf30 (alm-Q7E18)) and their analogs with Glu-7 (alm-E7Q18 and alm-E7E18). The single-channel currents were measured over a pH range of 3.5 to 8.7 using planar bilayers of diphytanoyl PC. The peptides all showed multi-level current fluctuations in this pH range. At pH 3.5 the channels formed by the four peptides were similar to each other irrespective of the side chain differences at positions 7 and 18. The ionization of Glu-7 (E7) and Glu-18 (E18) above neutral pH reduced the relative probabilities of low-conductance states (levels 1 and 2) and increased those of high-conductance states (levels 4-6). The channel conductance of the peptides with E7 and/or E18, which was distinct from that of alm-Q7Q18, showed a marked pH-dependence, especially for low-conductance states. The ionization of E7 further reduced the stability of channel structure, altered the current-voltage curve from a superlinear relation to a sublinear one, and enhanced cation selectivity. These results indicate that ionized E7 strongly influences the channel structure and the ion permeation, in contrast to ionized E18.
Full Text
The Full Text of this article is available as a PDF (238.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumann G., Mueller P. A molecular model of membrane excitability. J Supramol Struct. 1974;2(5-6):538–557. doi: 10.1002/jss.400020504. [DOI] [PubMed] [Google Scholar]
- Bezrukov S. M., Rand R. P., Vodyanoy I., Parsegian V. A. Lipid packing stress and polypeptide aggregation: alamethicin channel probed by proton titration of lipid charge. Faraday Discuss. 1998;(111):173–246. doi: 10.1039/a806579i. [DOI] [PubMed] [Google Scholar]
- Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277–303. doi: 10.1007/BF01869983. [DOI] [PubMed] [Google Scholar]
- Borisenko V., Sansom M. S., Woolley G. A. Protonation of lysine residues inverts cation/anion selectivity in a model channel. Biophys J. 2000 Mar;78(3):1335–1348. doi: 10.1016/s0006-3495(00)76688-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cafiso D. S. Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct. 1994;23:141–165. doi: 10.1146/annurev.bb.23.060194.001041. [DOI] [PubMed] [Google Scholar]
- Dieckmann G. R., Lear J. D., Zhong Q., Klein M. L., DeGrado W. F., Sharp K. A. Exploration of the structural features defining the conduction properties of a synthetic ion channel. Biophys J. 1999 Feb;76(2):618–630. doi: 10.1016/S0006-3495(99)77230-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg M., Hall J. E., Mead C. A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol. 1973 Dec 31;14(2):143–176. doi: 10.1007/BF01868075. [DOI] [PubMed] [Google Scholar]
- Fox R. O., Jr, Richards F. M. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature. 1982 Nov 25;300(5890):325–330. doi: 10.1038/300325a0. [DOI] [PubMed] [Google Scholar]
- Hanke W., Boheim G. The lowest conductance state of the alamethicin pore. Biochim Biophys Acta. 1980 Mar 13;596(3):456–462. doi: 10.1016/0005-2736(80)90134-0. [DOI] [PubMed] [Google Scholar]
- Jordan P. C., Bacquet R. J., McCammon J. A., Tran P. How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophys J. 1989 Jun;55(6):1041–1052. doi: 10.1016/S0006-3495(89)82903-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaduk C., Dathe M., Bienert M. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14. Biochim Biophys Acta. 1998 Aug 14;1373(1):137–146. doi: 10.1016/s0005-2736(98)00100-x. [DOI] [PubMed] [Google Scholar]
- Keller S. L., Bezrukov S. M., Gruner S. M., Tate M. W., Vodyanoy I., Parsegian V. A. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys J. 1993 Jul;65(1):23–27. doi: 10.1016/S0006-3495(93)81040-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koide N., Asami K., Fujita T. Ion-channels formed by hypelcins, antibiotic peptides, in planar bilayer lipid membranes. Biochim Biophys Acta. 1997 May 22;1326(1):47–53. doi: 10.1016/s0005-2736(97)00005-9. [DOI] [PubMed] [Google Scholar]
- Latorre R., Alvarez O. Voltage-dependent channels in planar lipid bilayer membranes. Physiol Rev. 1981 Jan;61(1):77–150. doi: 10.1152/physrev.1981.61.1.77. [DOI] [PubMed] [Google Scholar]
- Levitt D. G. Modeling of ion channels. J Gen Physiol. 1999 Jun;113(6):789–794. doi: 10.1085/jgp.113.6.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mak D. O., Webb W. W. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties. Biophys J. 1995 Dec;69(6):2323–2336. doi: 10.1016/S0006-3495(95)80102-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molle G., Dugast J. Y., Spach G., Duclohier H. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds. Biophys J. 1996 Apr;70(4):1669–1675. doi: 10.1016/S0006-3495(96)79729-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagaoka Y., Iida A., Kambara T., Asami K., Tachikawa E., Fujita T. Role of proline residue in the channel-forming and catecholamine-releasing activities of the peptaibol, trichosporin-B-VIa. Biochim Biophys Acta. 1996 Aug 14;1283(1):31–36. doi: 10.1016/0005-2736(96)00070-3. [DOI] [PubMed] [Google Scholar]
- Parsegian A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature. 1969 Mar 1;221(5183):844–846. doi: 10.1038/221844a0. [DOI] [PubMed] [Google Scholar]
- Sansom M. S. Structure and function of channel-forming peptaibols. Q Rev Biophys. 1993 Nov;26(4):365–421. doi: 10.1017/s0033583500002833. [DOI] [PubMed] [Google Scholar]
- Sansom M. S. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. doi: 10.1016/0079-6107(91)90004-c. [DOI] [PubMed] [Google Scholar]
- Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
- Starostin A. V., Butan R., Borisenko V., James D. A., Wenschuh H., Sansom M. S., Woolley G. A. An anion-selective analogue of the channel-forming peptide alamethicin. Biochemistry. 1999 May 11;38(19):6144–6150. doi: 10.1021/bi9826355. [DOI] [PubMed] [Google Scholar]
- Taylor R. J., de Levie R. "Reversed" alamethicin conductance in lipid bilayers. Biophys J. 1991 Apr;59(4):873–879. doi: 10.1016/S0006-3495(91)82299-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolley G. A., Wallace B. A. Model ion channels: gramicidin and alamethicin. J Membr Biol. 1992 Aug;129(2):109–136. doi: 10.1007/BF00219508. [DOI] [PubMed] [Google Scholar]
- You S., Peng S., Lien L., Breed J., Sansom M. S., Woolley G. A. Engineering stabilized ion channels: covalent dimers of alamethicin. Biochemistry. 1996 May 21;35(20):6225–6232. doi: 10.1021/bi9529216. [DOI] [PubMed] [Google Scholar]