Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):229–241. doi: 10.1016/s0006-3495(02)75164-3

Cloning and expression of the human T-type channel Ca(v)3.3: insights into prepulse facilitation.

Juan Carlos Gomora 1, Janet Murbartián 1, Juan Manuel Arias 1, Jung-Ha Lee 1, Edward Perez-Reyes 1
PMCID: PMC1302142  PMID: 12080115

Abstract

The full-length human Ca(v)3.3 (alpha(1I)) T-type channel was cloned, and found to be longer than previously reported. Comparison of the cDNA sequence to the human genomic sequence indicates the presence of an additional 4-kb exon that adds 214 amino acids to the carboxyl terminus and encodes the 3' untranslated region. The electrophysiological properties of the full-length channel were studied after transient transfection into 293 human embryonic kidney cells using 5 mM Ca(2+) as charge carrier. From a holding potential of -100 mV, step depolarizations elicited inward currents with an apparent threshold of -70 mV, a peak of -30 mV, and reversed at +40 mV. The kinetics of channel activation, inactivation, deactivation, and recovery from inactivation were very similar to those reported previously for rat Ca(v)3.3. Similar voltage-dependent gating and kinetics were found for truncated versions of human Ca(v)3.3, which lack either 118 or 288 of the 490 amino acids that compose the carboxyl terminus. A major difference between these constructs was that the full-length isoform generated twofold more current. These results suggest that sequences in the distal portion of Ca(v)3.3 play a role in channel expression. Studies on the voltage-dependence of activation revealed that a fraction of channels did not gate as low voltage-activated channels, requiring stronger depolarizations to open. A strong depolarizing prepulse (+100 mV, 200 ms) increased the fraction of channels that gated at low voltages. In contrast, human Ca(v)3.3 isoforms with shorter carboxyl termini were less affected by a prepulse. Therefore, Ca(v)3.3 is similar to high voltage-activated Ca(2+) channels in that depolarizing prepulses can regulate their activity, and their carboxy termini play a role in modulating channel activity.

Full Text

The Full Text of this article is available as a PDF (529.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alvarez J. L., Rubio L. S., Vassort G. Facilitation of T-type calcium current in bullfrog atrial cells: voltage-dependent relief of a G protein inhibitory tone. J Physiol. 1996 Mar 1;491(Pt 2):321–334. doi: 10.1113/jphysiol.1996.sp021218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnoult C., Lemos J. R., Florman H. M. Voltage-dependent modulation of T-type calcium channels by protein tyrosine phosphorylation. EMBO J. 1997 Apr 1;16(7):1593–1599. doi: 10.1093/emboj/16.7.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bean B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature. 1989 Jul 13;340(6229):153–156. doi: 10.1038/340153a0. [DOI] [PubMed] [Google Scholar]
  5. Carbone E., Lux H. D. Single low-voltage-activated calcium channels in chick and rat sensory neurones. J Physiol. 1987 May;386:571–601. doi: 10.1113/jphysiol.1987.sp016552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cribbs L. L., Gomora J. C., Daud A. N., Lee J. H., Perez-Reyes E. Molecular cloning and functional expression of Ca(v)3.1c, a T-type calcium channel from human brain. FEBS Lett. 2000 Jan 21;466(1):54–58. doi: 10.1016/s0014-5793(99)01756-1. [DOI] [PubMed] [Google Scholar]
  7. Cribbs L. L., Lee J. H., Yang J., Satin J., Zhang Y., Daud A., Barclay J., Williamson M. P., Fox M., Rees M. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res. 1998 Jul 13;83(1):103–109. doi: 10.1161/01.res.83.1.103. [DOI] [PubMed] [Google Scholar]
  8. Dunham I., Shimizu N., Roe B. A., Chissoe S., Hunt A. R., Collins J. E., Bruskiewich R., Beare D. M., Clamp M., Smink L. J. The DNA sequence of human chromosome 22. Nature. 1999 Dec 2;402(6761):489–495. doi: 10.1038/990031. [DOI] [PubMed] [Google Scholar]
  9. Ertel E. A., Campbell K. P., Harpold M. M., Hofmann F., Mori Y., Perez-Reyes E., Schwartz A., Snutch T. P., Tanabe T., Birnbaumer L. Nomenclature of voltage-gated calcium channels. Neuron. 2000 Mar;25(3):533–535. doi: 10.1016/s0896-6273(00)81057-0. [DOI] [PubMed] [Google Scholar]
  10. Frazier C. J., Serrano J. R., George E. G., Yu X., Viswanathan A., Perez-Reyes E., Jones S. W. Gating kinetics of the alpha1I T-type calcium channel. J Gen Physiol. 2001 Nov;118(5):457–470. doi: 10.1085/jgp.118.5.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ganitkevich VYa, Isenberg G. Stimulation-induced potentiation of T-type Ca2+ channel currents in myocytes from guinea-pig coronary artery. J Physiol. 1991 Nov;443:703–725. doi: 10.1113/jphysiol.1991.sp018859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hering S., Berjukow S., Sokolov S., Marksteiner R., Weiss R. G., Kraus R., Timin E. N. Molecular determinants of inactivation in voltage-gated Ca2+ channels. J Physiol. 2000 Oct 15;528(Pt 2):237–249. doi: 10.1111/j.1469-7793.2000.t01-1-00237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hescheler J., Trautwein W. Modification of L-type calcium current by intracellularly applied trypsin in guinea-pig ventricular myocytes. J Physiol. 1988 Oct;404:259–274. doi: 10.1113/jphysiol.1988.sp017289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Higashima M., Kinoshita H., Koshino Y. Contribution of T-type calcium channels to afterdischarge generation in rat hippocampal slices. Brain Res. 1998 Jan 19;781(1-2):129–136. doi: 10.1016/s0006-8993(97)01222-5. [DOI] [PubMed] [Google Scholar]
  15. Huguenard J. R., Gutnick M. J., Prince D. A. Transient Ca2+ currents in neurons isolated from rat lateral habenula. J Neurophysiol. 1993 Jul;70(1):158–166. doi: 10.1152/jn.1993.70.1.158. [DOI] [PubMed] [Google Scholar]
  16. Huguenard J. R. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 1996;58:329–348. doi: 10.1146/annurev.ph.58.030196.001553. [DOI] [PubMed] [Google Scholar]
  17. Huguenard J. R., Prince D. A. A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci. 1992 Oct;12(10):3804–3817. doi: 10.1523/JNEUROSCI.12-10-03804.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kavalali E. T., Hwang K. S., Plummer M. R. cAMP-dependent enhancement of dihydropyridine-sensitive calcium channel availability in hippocampal neurons. J Neurosci. 1997 Jul 15;17(14):5334–5348. doi: 10.1523/JNEUROSCI.17-14-05334.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klöckner U., Lee J. H., Cribbs L. L., Daud A., Hescheler J., Pereverzev A., Perez-Reyes E., Schneider T. Comparison of the Ca2 + currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca2 + channels. Eur J Neurosci. 1999 Dec;11(12):4171–4178. doi: 10.1046/j.1460-9568.1999.00849.x. [DOI] [PubMed] [Google Scholar]
  20. Knudsen S. Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics. 1999 May;15(5):356–361. doi: 10.1093/bioinformatics/15.5.356. [DOI] [PubMed] [Google Scholar]
  21. Kourennyi D. E., Barnes S. Depolarization-induced calcium channel facilitation in rod photoreceptors is independent of G proteins and phosphorylation. J Neurophysiol. 2000 Jul;84(1):133–138. doi: 10.1152/jn.2000.84.1.133. [DOI] [PubMed] [Google Scholar]
  22. Kozlov A. S., McKenna F., Lee J. H., Cribbs L. L., Perez-Reyes E., Feltz A., Lambert R. C. Distinct kinetics of cloned T-type Ca2 + channels lead to differential Ca2 + entry and frequency-dependence during mock action potentials. Eur J Neurosci. 1999 Dec;11(12):4149–4158. doi: 10.1046/j.1460-9568.1999.00841.x. [DOI] [PubMed] [Google Scholar]
  23. Kuo C. C., Yang S. Recovery from inactivation of t-type ca2+ channels in rat thalamic neurons. J Neurosci. 2001 Mar 15;21(6):1884–1892. doi: 10.1523/JNEUROSCI.21-06-01884.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee J. H., Daud A. N., Cribbs L. L., Lacerda A. E., Pereverzev A., Klöckner U., Schneider T., Perez-Reyes E. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci. 1999 Mar 15;19(6):1912–1921. doi: 10.1523/JNEUROSCI.19-06-01912.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  26. Martin R. L., Lee J. H., Cribbs L. L., Perez-Reyes E., Hanck D. A. Mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther. 2000 Oct;295(1):302–308. [PubMed] [Google Scholar]
  27. McRory J. E., Santi C. M., Hamming K. S., Mezeyova J., Sutton K. G., Baillie D. L., Stea A., Snutch T. P. Molecular and functional characterization of a family of rat brain T-type calcium channels. J Biol Chem. 2000 Nov 9;276(6):3999–4011. doi: 10.1074/jbc.M008215200. [DOI] [PubMed] [Google Scholar]
  28. Mittman S., Guo J., Emerick M. C., Agnew W. S. Structure and alternative splicing of the gene encoding alpha1I, a human brain T calcium channel alpha1 subunit. Neurosci Lett. 1999 Jul 16;269(3):121–124. doi: 10.1016/s0304-3940(99)00319-5. [DOI] [PubMed] [Google Scholar]
  29. Monteil A., Chemin J., Bourinet E., Mennessier G., Lory P., Nargeot J. Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J Biol Chem. 2000 Mar 3;275(9):6090–6100. doi: 10.1074/jbc.275.9.6090. [DOI] [PubMed] [Google Scholar]
  30. Monteil A., Chemin J., Leuranguer V., Altier C., Mennessier G., Bourinet E., Lory P., Nargeot J. Specific properties of T-type calcium channels generated by the human alpha 1I subunit. J Biol Chem. 2000 Jun 2;275(22):16530–16535. doi: 10.1074/jbc.C000090200. [DOI] [PubMed] [Google Scholar]
  31. Pan Z. H. Differential expression of high- and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. J Neurophysiol. 2000 Jan;83(1):513–527. doi: 10.1152/jn.2000.83.1.513. [DOI] [PubMed] [Google Scholar]
  32. Perez-Reyes E., Cribbs L. L., Daud A., Lacerda A. E., Barclay J., Williamson M. P., Fox M., Rees M., Lee J. H. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature. 1998 Feb 26;391(6670):896–900. doi: 10.1038/36110. [DOI] [PubMed] [Google Scholar]
  33. Peterson B. Z., Lee J. S., Mulle J. G., Wang Y., de Leon M., Yue D. T. Critical determinants of Ca(2+)-dependent inactivation within an EF-hand motif of L-type Ca(2+) channels. Biophys J. 2000 Apr;78(4):1906–1920. doi: 10.1016/S0006-3495(00)76739-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Publicover S. J., Preston M. R., El Haj A. J. Voltage-dependent potentiation of low-voltage-activated Ca2+ channel currents in cultured rat bone marrow cells. J Physiol. 1995 Dec 15;489(Pt 3):649–661. doi: 10.1113/jphysiol.1995.sp021080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Randall A. D., Tsien R. W. Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology. 1997 Jul;36(7):879–893. doi: 10.1016/s0028-3908(97)00086-5. [DOI] [PubMed] [Google Scholar]
  36. Satin J., Cribbs L. L. Identification of a T-type Ca(2+) channel isoform in murine atrial myocytes (AT-1 cells) Circ Res. 2000 Mar 31;86(6):636–642. doi: 10.1161/01.res.86.6.636. [DOI] [PubMed] [Google Scholar]
  37. Serrano J. R., Perez-Reyes E., Jones S. W. State-dependent inactivation of the alpha1G T-type calcium channel. J Gen Physiol. 1999 Aug;114(2):185–201. doi: 10.1085/jgp.114.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Son W. Y., Lee J. H., Lee J. H., Han C. T. Acrosome reaction of human spermatozoa is mainly mediated by alpha1H T-type calcium channels. Mol Hum Reprod. 2000 Oct;6(10):893–897. doi: 10.1093/molehr/6.10.893. [DOI] [PubMed] [Google Scholar]
  39. Staes M., Talavera K., Klugbauer N., Prenen J., Lacinova L., Droogmans G., Hofmann F., Nilius B. The amino side of the C-terminus determines fast inactivation of the T-type calcium channel alpha1G. J Physiol. 2001 Jan 1;530(Pt 1):35–45. doi: 10.1111/j.1469-7793.2001.0035m.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Talley E. M., Cribbs L. L., Lee J. H., Daud A., Perez-Reyes E., Bayliss D. A. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci. 1999 Mar 15;19(6):1895–1911. doi: 10.1523/JNEUROSCI.19-06-01895.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tarasenko A. N., Kostyuk P. G., Eremin A. V., Isaev D. S. Two types of low-voltage-activated Ca2+ channels in neurones of rat laterodorsal thalamic nucleus. J Physiol. 1997 Feb 15;499(Pt 1):77–86. doi: 10.1113/jphysiol.1997.sp021912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Toyota M., Ho C., Ohe-Toyota M., Baylin S. B., Issa J. P. Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5' CpG island in human tumors. Cancer Res. 1999 Sep 15;59(18):4535–4541. [PubMed] [Google Scholar]
  43. Wei X., Neely A., Lacerda A. E., Olcese R., Stefani E., Perez-Reyes E., Birnbaumer L. Modification of Ca2+ channel activity by deletions at the carboxyl terminus of the cardiac alpha 1 subunit. J Biol Chem. 1994 Jan 21;269(3):1635–1640. [PubMed] [Google Scholar]
  44. White G., Lovinger D. M., Weight F. F. Transient low-threshold Ca2+ current triggers burst firing through an afterdepolarizing potential in an adult mammalian neuron. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6802–6806. doi: 10.1073/pnas.86.17.6802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Williams M. E., Washburn M. S., Hans M., Urrutia A., Brust P. F., Prodanovich P., Harpold M. M., Stauderman K. A. Structure and functional characterization of a novel human low-voltage activated calcium channel. J Neurochem. 1999 Feb;72(2):791–799. doi: 10.1046/j.1471-4159.1999.0720791.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES