Abstract
Using the experimentally determined KcsA structure as a template, we propose a plausible explanation for the diversity of potassium channels seen in nature. A simplified model of KcsA is constructed from its atomic resolution structure by smoothing out the protein-water boundary and representing the atoms forming the channel protein as a homogeneous, low dielectric medium. The properties of the simplified and atomic-detail models, deduced from electrostatic calculations and Brownian dynamics simulations, are shown to be qualitatively similar. We then study how the current flowing across the simplified model channel changes as the shape of the intrapore region is modified. This is achieved by increasing the radius of the intracellular pore systematically from 1.5 to 5 A while leaving the dimensions of the selectivity filter and inner chamber unaltered. The strengths of the dipoles located near the entrances of the channel, the carbonyl groups lining the selectivity filter, and the helix macrodipoles are kept constant. The channel conductance increases steadily as the radius of the intracellular pore is increased. The rate-limiting step for both the outward and inward current is the time it takes for an ion to cross the residual energy barrier located in the intrapore region. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates slightly from Ohm's law at higher applied potentials. The nonlinearity in the current-voltage curve becomes less pronounced as the radius of the intracellular pore is increased. When the strengths of the dipoles near the intracellular entrance are reduced, the channel shows a pronounced inward rectification. Finally, the conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings on the transport of ions across the potassium channels and membrane channels in general.
Full Text
The Full Text of this article is available as a PDF (483.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen T. W., Chung S. H. Brownian dynamics study of an open-state KcsA potassium channel. Biochim Biophys Acta. 2001 Dec 1;1515(2):83–91. doi: 10.1016/s0005-2736(01)00395-9. [DOI] [PubMed] [Google Scholar]
- Aqvist J., Luzhkov V. Ion permeation mechanism of the potassium channel. Nature. 2000 Apr 20;404(6780):881–884. doi: 10.1038/35009114. [DOI] [PubMed] [Google Scholar]
- Bek S., Jakobsson E. Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels. Biophys J. 1994 Apr;66(4):1028–1038. doi: 10.1016/S0006-3495(94)80884-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernèche S., Roux B. Energetics of ion conduction through the K+ channel. Nature. 2001 Nov 1;414(6859):73–77. doi: 10.1038/35102067. [DOI] [PubMed] [Google Scholar]
- Christophersen P. Ca2(+)-activated K+ channel from human erythrocyte membranes: single channel rectification and selectivity. J Membr Biol. 1991 Jan;119(1):75–83. doi: 10.1007/BF01868542. [DOI] [PubMed] [Google Scholar]
- Chung S. H., Allen T. W., Hoyles M., Kuyucak S. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys J. 1999 Nov;77(5):2517–2533. doi: 10.1016/S0006-3495(99)77087-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung S. H., Hoyles M., Allen T., Kuyucak S. Study of ionic currents across a model membrane channel using Brownian dynamics. Biophys J. 1998 Aug;75(2):793–809. doi: 10.1016/S0006-3495(98)77569-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung Shin-Ho, Allen Toby W., Kuyucak Serdar. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys J. 2002 Feb;82(2):628–645. doi: 10.1016/S0006-3495(02)75427-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corry B., Allen T. W., Kuyucak S., Chung S. H. Mechanisms of permeation and selectivity in calcium channels. Biophys J. 2001 Jan;80(1):195–214. doi: 10.1016/S0006-3495(01)76007-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corry B., Kuyucak S., Chung S. H. Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics. Biophys J. 2000 May;78(5):2364–2381. doi: 10.1016/S0006-3495(00)76781-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuello L. G., Romero J. G., Cortes D. M., Perozo E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry. 1998 Mar 10;37(10):3229–3236. doi: 10.1021/bi972997x. [DOI] [PubMed] [Google Scholar]
- Dittrich M., Daut J. Voltage-dependent K(+) current in capillary endothelial cells isolated from guinea pig heart. Am J Physiol. 1999 Jul;277(1 Pt 2):H119–H127. doi: 10.1152/ajpheart.1999.277.1.H119. [DOI] [PubMed] [Google Scholar]
- Dopico A. M., Widmer H., Wang G., Lemos J. R., Treistman S. N. Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings. J Physiol. 1999 Aug 15;519(Pt 1):101–114. doi: 10.1111/j.1469-7793.1999.0101o.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Gelband G. H., McCullough J. R. Modulation of rabbit aortic Ca(2+)-activated K+ channels by pinacidil, cromakalim, and glibenclamide. Am J Physiol. 1993 May;264(5 Pt 1):C1119–C1127. doi: 10.1152/ajpcell.1993.264.5.C1119. [DOI] [PubMed] [Google Scholar]
- Gross A., Columbus L., Hideg K., Altenbach C., Hubbell W. L. Structure of the KcsA potassium channel from Streptomyces lividans: a site-directed spin labeling study of the second transmembrane segment. Biochemistry. 1999 Aug 10;38(32):10324–10335. doi: 10.1021/bi990856k. [DOI] [PubMed] [Google Scholar]
- Guidoni L., Torre V., Carloni P. Water and potassium dynamics inside the KcsA K(+) channel. FEBS Lett. 2000 Jul 14;477(1-2):37–42. doi: 10.1016/s0014-5793(00)01712-9. [DOI] [PubMed] [Google Scholar]
- Heginbotham L., Abramson T., MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science. 1992 Nov 13;258(5085):1152–1155. doi: 10.1126/science.1279807. [DOI] [PubMed] [Google Scholar]
- Heginbotham L., LeMasurier M., Kolmakova-Partensky L., Miller C. Single streptomyces lividans K(+) channels: functional asymmetries and sidedness of proton activation. J Gen Physiol. 1999 Oct;114(4):551–560. doi: 10.1085/jgp.114.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heginbotham L., MacKinnon R. Conduction properties of the cloned Shaker K+ channel. Biophys J. 1993 Nov;65(5):2089–2096. doi: 10.1016/S0006-3495(93)81244-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill J. A., Jr, Coronado R., Strauss H. C. Potassium channel of cardiac sarcoplasmic reticulum is a multi-ion channel. Biophys J. 1989 Jan;55(1):35–45. doi: 10.1016/S0006-3495(89)82778-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch J. R., Weber G., Kleta I., Schlatter E. A novel cGMP-regulated K+ channel in immortalized human kidney epitheliall cells (IHKE-1). J Physiol. 1999 Sep 15;519(Pt 3):645–655. doi: 10.1111/j.1469-7793.1999.0645n.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirschberg B., Maylie J., Adelman J. P., Marrion N. V. Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophys J. 1999 Oct;77(4):1905–1913. doi: 10.1016/S0006-3495(99)77032-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong K. H., Miller C. The lipid-protein interface of a Shaker K(+) channel. J Gen Physiol. 2000 Jan;115(1):51–58. doi: 10.1085/jgp.115.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu S. L., Yamamoto Y., Kao C. Y. Permeation, selectivity, and blockade of the Ca2+-activated potassium channel of the guinea pig taenia coli myocyte. J Gen Physiol. 1989 Nov;94(5):849–862. doi: 10.1085/jgp.94.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubo Y., Murata Y. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. J Physiol. 2001 Mar 15;531(Pt 3):645–660. doi: 10.1111/j.1469-7793.2001.0645h.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lara J., Acevedo J. J., Onetti C. G. Large-conductance Ca2+-activated potassium channels in secretory neurons. J Neurophysiol. 1999 Sep;82(3):1317–1325. doi: 10.1152/jn.1999.82.3.1317. [DOI] [PubMed] [Google Scholar]
- Latorre R., Oberhauser A., Labarca P., Alvarez O. Varieties of calcium-activated potassium channels. Annu Rev Physiol. 1989;51:385–399. doi: 10.1146/annurev.ph.51.030189.002125. [DOI] [PubMed] [Google Scholar]
- Lazaridis T., Karplus M. Effective energy function for proteins in solution. Proteins. 1999 May 1;35(2):133–152. doi: 10.1002/(sici)1097-0134(19990501)35:2<133::aid-prot1>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- LeMasurier M., Heginbotham L., Miller C. KcsA: it's a potassium channel. J Gen Physiol. 2001 Sep;118(3):303–314. doi: 10.1085/jgp.118.3.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y. S., Sompornpisut P., Perozo E. Structure of the KcsA channel intracellular gate in the open state. Nat Struct Biol. 2001 Oct;8(10):883–887. doi: 10.1038/nsb1001-883. [DOI] [PubMed] [Google Scholar]
- Lu Z., Klem A. M., Ramu Y. Ion conduction pore is conserved among potassium channels. Nature. 2001 Oct 25;413(6858):809–813. doi: 10.1038/35101535. [DOI] [PubMed] [Google Scholar]
- Luzhkov V. B., Aqvist J. A computational study of ion binding and protonation states in the KcsA potassium channel. Biochim Biophys Acta. 2000 Sep 29;1481(2):360–370. doi: 10.1016/s0167-4838(00)00183-7. [DOI] [PubMed] [Google Scholar]
- MacKinnon R., Cohen S. L., Kuo A., Lee A., Chait B. T. Structural conservation in prokaryotic and eukaryotic potassium channels. Science. 1998 Apr 3;280(5360):106–109. doi: 10.1126/science.280.5360.106. [DOI] [PubMed] [Google Scholar]
- Mashl R. J., Tang Y., Schnitzer J., Jakobsson E. Hierarchical approach to predicting permeation in ion channels. Biophys J. 2001 Nov;81(5):2473–2483. doi: 10.1016/S0006-3495(01)75893-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meuser D., Splitt H., Wagner R., Schrempf H. Mutations stabilizing an open conformation within the external region of the permeation pathway of the potassium channel KcsA. Eur Biophys J. 2001 Sep;30(5):385–391. doi: 10.1007/s002490100147. [DOI] [PubMed] [Google Scholar]
- Miller C. Ionic hopping defended. J Gen Physiol. 1999 Jun;113(6):783–787. doi: 10.1085/jgp.113.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morais-Cabral J. H., Zhou Y., MacKinnon R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature. 2001 Nov 1;414(6859):37–42. doi: 10.1038/35102000. [DOI] [PubMed] [Google Scholar]
- Noulin J. F., Brochiero E., Lapointe J. Y., Laprade R. Two types of K(+) channels at the basolateral membrane of proximal tubule: inhibitory effect of taurine. Am J Physiol. 1999 Aug;277(2 Pt 2):F290–F297. doi: 10.1152/ajprenal.1999.277.2.F290. [DOI] [PubMed] [Google Scholar]
- Perozo E., Cortes D. M., Cuello L. G. Structural rearrangements underlying K+-channel activation gating. Science. 1999 Jul 2;285(5424):73–78. doi: 10.1126/science.285.5424.73. [DOI] [PubMed] [Google Scholar]
- Perozo E., Cortes D. M., Cuello L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 1998 Jun;5(6):459–469. doi: 10.1038/nsb0698-459. [DOI] [PubMed] [Google Scholar]
- Perozo E. Structure and packing orientation of transmembrane segments in voltage-dependent channels. Lessons from perturbation analysis. J Gen Physiol. 2000 Jan;115(1):29–32. doi: 10.1085/jgp.115.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ranatunga K. M., Shrivastava I. H., Smith G. R., Sansom M. S. Side-chain ionization states in a potassium channel. Biophys J. 2001 Mar;80(3):1210–1219. doi: 10.1016/S0006-3495(01)76097-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid G., Scholz A., Bostock H., Vogel W. Human axons contain at least five types of voltage-dependent potassium channel. J Physiol. 1999 Aug 1;518(Pt 3):681–696. doi: 10.1111/j.1469-7793.1999.0681p.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roux B., Bernèche S., Im W. Ion channels, permeation, and electrostatics: insight into the function of KcsA. Biochemistry. 2000 Nov 7;39(44):13295–13306. doi: 10.1021/bi001567v. [DOI] [PubMed] [Google Scholar]
- Schlatter E., Bleich M., Hirsch J., Markstahler U., Fröbe U., Greger R. Cation specificity and pharmacological properties of the Ca(2+)-dependent K+ channel of rat cortical collecting ducts. Pflugers Arch. 1993 Feb;422(5):481–491. doi: 10.1007/BF00375076. [DOI] [PubMed] [Google Scholar]
- Schrempf H., Schmidt O., Kümmerlen R., Hinnah S., Müller D., Betzler M., Steinkamp T., Wagner R. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 1995 Nov 1;14(21):5170–5178. doi: 10.1002/j.1460-2075.1995.tb00201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro M. S., DeCoursey T. E. Selectivity and gating of the type L potassium channel in mouse lymphocytes. J Gen Physiol. 1991 Jun;97(6):1227–1250. doi: 10.1085/jgp.97.6.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shvinka N. E., Caffier G. Selectivity for cations in potassium and gramicidin channels of the muscle fibre membrane. Biomed Biochim Acta. 1988;47(6):481–487. [PubMed] [Google Scholar]
- Stampe P., Arreola J., Pérez-Cornejo P., Begenisich T. Nonindependent K+ movement through the pore in IRK1 potassium channels. J Gen Physiol. 1998 Oct;112(4):475–484. doi: 10.1085/jgp.112.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabcharani J. A., Misler S. Ca2+-activated K+ channel in rat pancreatic islet B cells: permeation, gating and blockade by cations. Biochim Biophys Acta. 1989 Jun 26;982(1):62–72. doi: 10.1016/0005-2736(89)90174-0. [DOI] [PubMed] [Google Scholar]
- Thompson G. A., Leyland M. L., Ashmole I., Sutcliffe M. J., Stanfield P. R. Residues beyond the selectivity filter of the K+ channel kir2.1 regulate permeation and block by external Rb+ and Cs+. J Physiol. 2000 Jul 15;526(Pt 2):231–240. doi: 10.1111/j.1469-7793.2000.00231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Biggin P. C., Smith G. R., Sansom M. S. Simulation approaches to ion channel structure-function relationships. Q Rev Biophys. 2001 Nov;34(4):473–561. doi: 10.1017/s0033583501003729. [DOI] [PubMed] [Google Scholar]
- Tyerman S. D., Terry B. R., Findlay G. P. Multiple conductances in the large K+ channel from Chara corallina shown by a transient analysis method. Biophys J. 1992 Mar;61(3):736–749. doi: 10.1016/S0006-3495(92)81878-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Y., Morais-Cabral J. H., Kaufman A., MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature. 2001 Nov 1;414(6859):43–48. doi: 10.1038/35102009. [DOI] [PubMed] [Google Scholar]