Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):278–289. doi: 10.1016/S0006-3495(02)75168-0

A large-conductance anion channel of the Golgi complex.

Roger J Thompson 1, Mark H Nordeen 1, Kathryn E Howell 1, John H Caldwell 1
PMCID: PMC1302146  PMID: 12080119

Abstract

An acidic lumenal pH is vital for the proper posttranslational modifications and sorting of proteins and lipids from the Golgi complex. We characterized ion channels present in Golgi fractions that have been cleared of transiting proteins. A large conductance anion channel was observed in approximately 30% of successful channel incorporations into the planar lipid bilayer. The channel, GOLAC-2, has six levels (one closed and five open). The open states are each approximately 20% increments of the maximal, 325 pS conductance. The channel was approximately 6 times more selective for Cl(-) over K(+). Binomial analysis of percent occupancy for each conducting level supports the hypothesis of five independent conducting pathways. The conducting levels can coordinately gate because full openings and closings were often observed. Addition of 3 to 5 mM reduced glutathione to the cis chamber caused dose-dependent increases in single channel conductance, indicating that the channel may be regulated by the oxidation-reduction state of the cell. We propose that GOLAC-2 is a co-channel complex consisting of five identical pores that have a coordinated gating mechanism. GOALC-2 may function as a source of counter anions for the H(+)-ATPase and may be involved in regulating charge balance and membrane potential of the Golgi complex.

Full Text

The Full Text of this article is available as a PDF (573.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Pathak R. K. Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell. 1985 Mar;40(3):635–643. doi: 10.1016/0092-8674(85)90212-0. [DOI] [PubMed] [Google Scholar]
  2. Berryman M., Bretscher A. Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Mol Biol Cell. 2000 May;11(5):1509–1521. doi: 10.1091/mbc.11.5.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bos K., Wraight C., Stanley K. K. TGN38 is maintained in the trans-Golgi network by a tyrosine-containing motif in the cytoplasmic domain. EMBO J. 1993 May;12(5):2219–2228. doi: 10.1002/j.1460-2075.1993.tb05870.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. G., Murray D., Ashley R. H. Single-channel properties of a rat brain endoplasmic reticulum anion channel. Biophys J. 1997 Jul;73(1):168–178. doi: 10.1016/S0006-3495(97)78057-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Demaurex N., Furuya W., D'Souza S., Bonifacino J. S., Grinstein S. Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and furin from the cell surface. J Biol Chem. 1998 Jan 23;273(4):2044–2051. doi: 10.1074/jbc.273.4.2044. [DOI] [PubMed] [Google Scholar]
  7. Dulhunty A., Gage P., Curtis S., Chelvanayagam G., Board P. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J Biol Chem. 2000 Oct 16;276(5):3319–3323. doi: 10.1074/jbc.M007874200. [DOI] [PubMed] [Google Scholar]
  8. Duncan R. R., Westwood P. K., Boyd A., Ashley R. H. Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J Biol Chem. 1997 Sep 19;272(38):23880–23886. doi: 10.1074/jbc.272.38.23880. [DOI] [PubMed] [Google Scholar]
  9. Gaxiola R. A., Yuan D. S., Klausner R. D., Fink G. R. The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):4046–4050. doi: 10.1073/pnas.95.7.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glickman J., Croen K., Kelly S., Al-Awqati Q. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J Cell Biol. 1983 Oct;97(4):1303–1308. doi: 10.1083/jcb.97.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrop S. J., DeMaere M. Z., Fairlie W. D., Reztsova T., Valenzuela S. M., Mazzanti M., Tonini R., Qiu M. R., Jankova L., Warton K. Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution. J Biol Chem. 2001 Sep 10;276(48):44993–45000. doi: 10.1074/jbc.M107804200. [DOI] [PubMed] [Google Scholar]
  12. Herrmann J. M., Malkus P., Schekman R. Out of the ER--outfitters, escorts and guides. Trends Cell Biol. 1999 Jan;9(1):5–7. doi: 10.1016/s0962-8924(98)01414-7. [DOI] [PubMed] [Google Scholar]
  13. Hirschberg C. B., Robbins P. W., Abeijon C. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1998;67:49–69. doi: 10.1146/annurev.biochem.67.1.49. [DOI] [PubMed] [Google Scholar]
  14. Jentsch T. J., Friedrich T., Schriever A., Yamada H. The CLC chloride channel family. Pflugers Arch. 1999 May;437(6):783–795. doi: 10.1007/s004240050847. [DOI] [PubMed] [Google Scholar]
  15. Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985 Oct 4;230(4721):25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  16. Kourie J. I. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol. 1998 Jul;275(1 Pt 1):C1–24. doi: 10.1152/ajpcell.1998.275.1.C1. [DOI] [PubMed] [Google Scholar]
  17. Kourie J. I., Laver D. R., Junankar P. R., Gage P. W., Dulhunty A. F. Characteristics of two types of chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biophys J. 1996 Jan;70(1):202–221. doi: 10.1016/S0006-3495(96)79564-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krouse M. E., Schneider G. T., Gage P. W. A large anion-selective channel has seven conductance levels. Nature. 1986 Jan 2;319(6048):58–60. doi: 10.1038/319058a0. [DOI] [PubMed] [Google Scholar]
  19. Ladinsky M. S., Howell K. E. The trans-Golgi network can be dissected structurally and functionally from the cisternae of the Golgi complex by brefeldin A. Eur J Cell Biol. 1992 Oct;59(1):92–105. [PubMed] [Google Scholar]
  20. Landry D., Sullivan S., Nicolaides M., Redhead C., Edelman A., Field M., al-Awqati Q., Edwards J. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J Biol Chem. 1993 Jul 15;268(20):14948–14955. [PubMed] [Google Scholar]
  21. Laver D. R., Peter W. G. Interpretation of substates in ion channels: unipores or multipores? Prog Biophys Mol Biol. 1997;67(2-3):99–140. doi: 10.1016/s0079-6107(97)00008-4. [DOI] [PubMed] [Google Scholar]
  22. Li Xinhua, Weinman Steven A. Chloride channels and hepatocellular function: prospects for molecular identification. Annu Rev Physiol. 2002;64:609–633. doi: 10.1146/annurev.physiol.64.090501.145429. [DOI] [PubMed] [Google Scholar]
  23. Llopis J., McCaffery J. M., Miyawaki A., Farquhar M. G., Tsien R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6803–6808. doi: 10.1073/pnas.95.12.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mindell J. A., Maduke M., Miller C., Grigorieff N. Projection structure of a ClC-type chloride channel at 6.5 A resolution. Nature. 2001 Jan 11;409(6817):219–223. doi: 10.1038/35051631. [DOI] [PubMed] [Google Scholar]
  25. Morier N., Sauvé R. Analysis of a novel double-barreled anion channel from rat liver rough endoplasmic reticulum. Biophys J. 1994 Aug;67(2):590–602. doi: 10.1016/S0006-3495(94)80519-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nagasawa M., Kanzaki M., Iino Y., Morishita Y., Kojima I. Identification of a novel chloride channel expressed in the endoplasmic reticulum, golgi apparatus, and nucleus. J Biol Chem. 2001 Mar 5;276(23):20413–20418. doi: 10.1074/jbc.M100366200. [DOI] [PubMed] [Google Scholar]
  27. Nordeen M. H., Jones S. M., Howell K. E., Caldwell J. H. GOLAC: an endogenous anion channel of the Golgi complex. Biophys J. 2000 Jun;78(6):2918–2928. doi: 10.1016/S0006-3495(00)76832-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Patlak J. B. Measuring kinetics of complex single ion channel data using mean-variance histograms. Biophys J. 1993 Jul;65(1):29–42. doi: 10.1016/S0006-3495(93)81041-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Perez M., Hirschberg C. B. Transport of sugar nucleotides into the lumen of vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. Methods Enzymol. 1987;138:709–715. doi: 10.1016/0076-6879(87)38061-9. [DOI] [PubMed] [Google Scholar]
  30. Rousseau E. Single chloride-selective channel from cardiac sarcoplasmic reticulum studied in planar lipid bilayers. J Membr Biol. 1989 Aug;110(1):39–47. doi: 10.1007/BF01870991. [DOI] [PubMed] [Google Scholar]
  31. Taylor R. S., Jones S. M., Dahl R. H., Nordeen M. H., Howell K. E. Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell. 1997 Oct;8(10):1911–1931. doi: 10.1091/mbc.8.10.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tulk B. M., Schlesinger P. H., Kapadia S. A., Edwards J. C. CLIC-1 functions as a chloride channel when expressed and purified from bacteria. J Biol Chem. 2000 Sep 1;275(35):26986–26993. doi: 10.1074/jbc.M004301200. [DOI] [PubMed] [Google Scholar]
  33. Weinreich F., Jentsch T. J. Pores formed by single subunits in mixed dimers of different CLC chloride channels. J Biol Chem. 2000 Oct 16;276(4):2347–2353. doi: 10.1074/jbc.M005733200. [DOI] [PubMed] [Google Scholar]
  34. Wright E. M., Diamond J. M. Anion selectivity in biological systems. Physiol Rev. 1977 Jan;57(1):109–156. doi: 10.1152/physrev.1977.57.1.109. [DOI] [PubMed] [Google Scholar]
  35. al-Awqati Q. Chloride channels of intracellular organelles. Curr Opin Cell Biol. 1995 Aug;7(4):504–508. doi: 10.1016/0955-0674(95)80006-9. [DOI] [PubMed] [Google Scholar]
  36. van Meer G. What sugar next? Dimerization of sphingolipid glycosyltransferases. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1321–1323. doi: 10.1073/pnas.98.4.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES