Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):299–308. doi: 10.1016/S0006-3495(02)75170-9

Adhesion of nanoparticles to vesicles: a Brownian dynamics simulation.

Hiroshi Noguchi 1, Masako Takasu 1
PMCID: PMC1302148  PMID: 12080121

Abstract

We studied the interaction of bilayer vesicles and adhesive nanoparticles using a Brownian dynamics simulation. The nanoparticles are simple models of proteins or colloids. The adhering nanoparticle induces the morphological change of the vesicle: budding, formation of two vesicles in which only outer monolayers are connected, and fission. We also show that the nanoparticle promotes the fusion process: fusion-pore opening from a stalk intermediate, a neck-like structure that only connects outer monolayers of two vesicles. The nanoparticle bends the stalk, and induces the pore opening.

Full Text

The Full Text of this article is available as a PDF (432.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan B. B., Balch W. E. Protein sorting by directed maturation of Golgi compartments. Science. 1999 Jul 2;285(5424):63–66. doi: 10.1126/science.285.5424.63. [DOI] [PubMed] [Google Scholar]
  2. Angelova M. I., Tsoneva I. Interactions of DNA with giant liposomes. Chem Phys Lipids. 1999 Aug;101(1):123–137. doi: 10.1016/s0009-3084(99)00060-2. [DOI] [PubMed] [Google Scholar]
  3. Boulbitch A., Guttenberg Z., Sackmann E. Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system. Biophys J. 2001 Nov;81(5):2743–2751. doi: 10.1016/S0006-3495(01)75917-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandler D. E., Heuser J. E. Arrest of membrane fusion events in mast cells by quick-freezing. J Cell Biol. 1980 Aug;86(2):666–674. doi: 10.1083/jcb.86.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chenevier P., Veyret B., Roux D., Henry-Toulmé N. Interaction of cationic colloids at the surface of J774 cells: a kinetic analysis. Biophys J. 2000 Sep;79(3):1298–1309. doi: 10.1016/S0006-3495(00)76383-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chernomordik L., Kozlov M. M., Zimmerberg J. Lipids in biological membrane fusion. J Membr Biol. 1995 Jul;146(1):1–14. doi: 10.1007/BF00232676. [DOI] [PubMed] [Google Scholar]
  7. Denton AR, Ashcroft NW. Modified weighted-density-functional theory of nonuniform classical liquids. Phys Rev A Gen Phys. 1989 May 1;39(9):4701–4708. doi: 10.1103/physreva.39.4701. [DOI] [PubMed] [Google Scholar]
  8. Groot R. D., Rabone K. L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J. 2001 Aug;81(2):725–736. doi: 10.1016/S0006-3495(01)75737-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huebner S., Battersby B. J., Grimm R., Cevc G. Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. Biophys J. 1999 Jun;76(6):3158–3166. doi: 10.1016/S0006-3495(99)77467-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jahn R., Südhof T. C. Membrane fusion and exocytosis. Annu Rev Biochem. 1999;68:863–911. doi: 10.1146/annurev.biochem.68.1.863. [DOI] [PubMed] [Google Scholar]
  11. Kanaseki T., Kawasaki K., Murata M., Ikeuchi Y., Ohnishi S. Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy. J Cell Biol. 1997 Jun 2;137(5):1041–1056. doi: 10.1083/jcb.137.5.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuzmin P. I., Zimmerberg J., Chizmadzhev Y. A., Cohen F. S. A quantitative model for membrane fusion based on low-energy intermediates. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7235–7240. doi: 10.1073/pnas.121191898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lafleur M., Bloom M., Eikenberry E. F., Gruner S. M., Han Y., Cullis P. R. Correlation between lipid plane curvature and lipid chain order. Biophys J. 1996 Jun;70(6):2747–2757. doi: 10.1016/S0006-3495(96)79844-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindahl E., Edholm O. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J. 2000 Jul;79(1):426–433. doi: 10.1016/S0006-3495(00)76304-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Milner ST, Safran SA. Dynamical fluctuations of droplet microemulsions and vesicles. Phys Rev A Gen Phys. 1987 Nov 1;36(9):4371–4379. doi: 10.1103/physreva.36.4371. [DOI] [PubMed] [Google Scholar]
  16. Nagle J. F., Tristram-Nagle S. Lipid bilayer structure. Curr Opin Struct Biol. 2000 Aug;10(4):474–480. doi: 10.1016/s0959-440x(00)00117-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Netz RR, Schick M. Pore formation and rupture in fluid bilayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):3875–3885. doi: 10.1103/physreve.53.3875. [DOI] [PubMed] [Google Scholar]
  18. Noguchi H., Takasu M. Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep 24;64(4 Pt 1):041913–041913. doi: 10.1103/PhysRevE.64.041913. [DOI] [PubMed] [Google Scholar]
  19. Ohta-Iino S., Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A. Fast lipid disorientation at the onset of membrane fusion revealed by molecular dynamics simulations. Biophys J. 2001 Jul;81(1):217–224. doi: 10.1016/S0006-3495(01)75693-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ornberg R. L., Reese T. S. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes. J Cell Biol. 1981 Jul;90(1):40–54. doi: 10.1083/jcb.90.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saiz L., Klein M. L. Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys J. 2001 Jul;81(1):204–216. doi: 10.1016/S0006-3495(01)75692-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schekman R., Orci L. Coat proteins and vesicle budding. Science. 1996 Mar 15;271(5255):1526–1533. doi: 10.1126/science.271.5255.1526. [DOI] [PubMed] [Google Scholar]
  23. Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sunil Kumar P. B., Gompper G., Lipowsky R. Budding dynamics of multicomponent membranes. Phys Rev Lett. 2001 Apr 23;86(17):3911–3914. doi: 10.1103/PhysRevLett.86.3911. [DOI] [PubMed] [Google Scholar]
  25. Tarazona P. Free-energy density functional for hard spheres. Phys Rev A Gen Phys. 1985 Apr;31(4):2672–2679. doi: 10.1103/physreva.31.2672. [DOI] [PubMed] [Google Scholar]
  26. Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  27. Tsafrir I., Sagi D., Arzi T., Guedeau-Boudeville M. A., Frette V., Kandel D., Stavans J. Pearling instabilities of membrane tubes with anchored polymers. Phys Rev Lett. 2001 Feb 5;86(6):1138–1141. doi: 10.1103/PhysRevLett.86.1138. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES