Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):309–321. doi: 10.1016/S0006-3495(02)75171-0

Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (maltoporin) channel of Escherichia coli. II. Effect on maltose and maltooligosaccharide binding kinetics.

Frank Orlik 1, Christian Andersen 1, Roland Benz 1
PMCID: PMC1302149  PMID: 12080122

Abstract

The 3-D structure of the maltooligosaccharide-specific LamB channel of Escherichia coli (also called maltoporin) is known from x-ray crystallography. The central constriction of the channel formed by the external loop 3 is controlled by tyrosine 118. Y118 was replaced by site-directed mutagenesis by 10 other amino acids (alanine (A), isoleucine (I), asparagine (N), serine (S), cysteine (C), aspartic acid (D), arginine (R), histidine (H), phenylalanine (F), and tryptophan (W)) including neutral ones, negatively and positively charged amino acids to study the effect of their size, their hydrophobicity index, and their charge on maltose and maltooligosaccharide binding to LamB. The mutants were reconstituted into lipid bilayer membranes and the stability constants for binding of maltose, maltotriose, maltopentaose, and maltoheptaose to the channel were measured using titration experiments. The mutation of Y118 to any other non-aromatic amino acid led to a substantial decrease of the stability constant of binding by factors between about two and six. The highest effect was observed for the mutant Y118A. Replacement of Y118 by the two other aromatic amino acids, phenylalanine (F) and tryptophan (W), resulted in a substantial increase of the stability constant maximally by a factor of almost 400 for the Y118W mutant. The carbohydrate-induced block of the channel function was used for the study of current noise through the different mutant LamB channels. The analysis of the power density spectra allowed the evaluation of the on- and off-rate constants (k(1) and k(-1)) of sugar binding. The results suggest that both rate constants were affected by the mutations. For most mutants, with the exception of Y118F and Y118W, k(1) decreased and k(-1) increased, whereas the opposite was found for the aromatic amino acid mutants. The results suggest that tyrosine 118 has a crucial effect on carbohydrate transport through LamB.

Full Text

The Full Text of this article is available as a PDF (190.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen C., Bachmeyer C., Täuber H., Benz R., Wang J., Michel V., Newton S. M., Hofnung M., Charbit A. In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K-12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding. Mol Microbiol. 1999 May;32(4):851–867. doi: 10.1046/j.1365-2958.1999.01406.x. [DOI] [PubMed] [Google Scholar]
  2. Andersen C., Cseh R., Schülein K., Benz R. Study of sugar binding to the sucrose-specific ScrY channel of enteric bacteria using current noise analysis. J Membr Biol. 1998 Aug 1;164(3):263–274. doi: 10.1007/s002329900411. [DOI] [PubMed] [Google Scholar]
  3. Andersen C., Jordy M., Benz R. Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise. J Gen Physiol. 1995 Mar;105(3):385–401. doi: 10.1085/jgp.105.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benz R., Francis G., Nakae T., Ferenci T. Investigation of the selectivity of maltoporin channels using mutant LamB proteins: mutations changing the maltodextrin binding site. Biochim Biophys Acta. 1992 Mar 2;1104(2):299–307. doi: 10.1016/0005-2736(92)90044-m. [DOI] [PubMed] [Google Scholar]
  5. Benz R., Hancock R. E. Mechanism of ion transport through the anion-selective channel of the Pseudomonas aeruginosa outer membrane. J Gen Physiol. 1987 Feb;89(2):275–295. doi: 10.1085/jgp.89.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benz R., Janko K., Boos W., Läuger P. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta. 1978 Aug 17;511(3):305–319. doi: 10.1016/0005-2736(78)90269-9. [DOI] [PubMed] [Google Scholar]
  7. Benz R., Schmid A., Nakae T., Vos-Scheperkeuter G. H. Pore formation by LamB of Escherichia coli in lipid bilayer membranes. J Bacteriol. 1986 Mar;165(3):978–986. doi: 10.1128/jb.165.3.978-986.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Benz R., Schmid A., Vos-Scheperkeuter G. H. Mechanism of sugar transport through the sugar-specific LamB channel of Escherichia coli outer membrane. J Membr Biol. 1987;100(1):21–29. doi: 10.1007/BF02209137. [DOI] [PubMed] [Google Scholar]
  9. Brass J. M., Bauer K., Ehmann U., Boos W. Maltose-binding protein does not modulate the activity of maltoporin as a general porin in Escherichia coli. J Bacteriol. 1985 Feb;161(2):720–726. doi: 10.1128/jb.161.2.720-726.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Charbit A., Gehring K., Nikaido H., Ferenci T., Hofnung M. Maltose transport and starch binding in phage-resistant point mutants of maltoporin. Functional and topological implications. J Mol Biol. 1988 Jun 5;201(3):487–496. doi: 10.1016/0022-2836(88)90630-4. [DOI] [PubMed] [Google Scholar]
  11. Clune A., Lee K. S., Ferenci T. Affinity engineering of maltoporin: variants with enhanced affinity for particular ligands. Biochem Biophys Res Commun. 1984 May 31;121(1):34–40. doi: 10.1016/0006-291x(84)90684-3. [DOI] [PubMed] [Google Scholar]
  12. Conti F., Neumcke B., Nonner W., Stämpfli R. Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibres. J Physiol. 1980 Nov;308:217–239. doi: 10.1113/jphysiol.1980.sp013469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Conti F., Wanke E. Channel noise in nerve membranes and lipid bilayers. Q Rev Biophys. 1975 Nov;8(4):451–506. doi: 10.1017/s0033583500001967. [DOI] [PubMed] [Google Scholar]
  14. Dutzler R., Wang Y. F., Rizkallah P., Rosenbusch J. P., Schirmer T. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 1996 Feb 15;4(2):127–134. doi: 10.1016/s0969-2126(96)00016-0. [DOI] [PubMed] [Google Scholar]
  15. Ferenci T., Lee K. S. Directed evolution of the lambda receptor of Escherichia coli through affinity chromatographic selection. J Mol Biol. 1982 Sep 25;160(3):431–444. doi: 10.1016/0022-2836(82)90306-0. [DOI] [PubMed] [Google Scholar]
  16. Ferenci T., Schwentorat M., Ullrich S., Vilmart J. Lambda receptor in the outer membrane of Escherichia coli as a binding protein for maltodextrins and starch polysaccharides. J Bacteriol. 1980 May;142(2):521–526. doi: 10.1128/jb.142.2.521-526.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Forst D., Welte W., Wacker T., Diederichs K. Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Biol. 1998 Jan;5(1):37–46. doi: 10.1038/nsb0198-37. [DOI] [PubMed] [Google Scholar]
  18. Francis G., Brennan L., Ferenci T. Affinity-chromatographic purification of sixteen cysteine-substituted maltoporin variants: thiol reactivity and cross-linking in an outer membrane protein of Escherichia coli. Biochim Biophys Acta. 1991 Aug 5;1067(1):89–96. doi: 10.1016/0005-2736(91)90029-8. [DOI] [PubMed] [Google Scholar]
  19. Freundlieb S., Ehmann U., Boos W. Facilitated diffusion of p-nitrophenyl-alpha-D-maltohexaoside through the outer membrane of Escherichia coli. Characterization of LamB as a specific and saturable channel for maltooligosaccharides. J Biol Chem. 1988 Jan 5;263(1):314–320. [PubMed] [Google Scholar]
  20. Heine H. G., Francis G., Lee K. S., Ferenci T. Genetic analysis of sequences in maltoporin that contribute to binding domains and pore structure. J Bacteriol. 1988 Apr;170(4):1730–1738. doi: 10.1128/jb.170.4.1730-1738.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hilty C., Winterhalter M. Facilitated substrate transport through membrane proteins. Phys Rev Lett. 2001 Jun 11;86(24):5624–5627. doi: 10.1103/PhysRevLett.86.5624. [DOI] [PubMed] [Google Scholar]
  22. Jordy M., Andersen C., Schülein K., Ferenci T., Benz R. Rate constants of sugar transport through two LamB mutants of Escherichia coli: comparison with wild-type maltoporin and LamB of Salmonella typhimurium. J Mol Biol. 1996 Jun 21;259(4):666–678. doi: 10.1006/jmbi.1996.0348. [DOI] [PubMed] [Google Scholar]
  23. Klebba P. E., Hofnung M., Charbit A. A model of maltodextrin transport through the sugar-specific porin, LamB, based on deletion analysis. EMBO J. 1994 Oct 3;13(19):4670–4675. doi: 10.1002/j.1460-2075.1994.tb06790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kolb H. A., Läuger P., Bamberg E. Correlation analysis of electrical noise in lipid bilayer membranes: kinetics of gramicidin A channels. J Membr Biol. 1975;20(1-2):133–154. doi: 10.1007/BF01870632. [DOI] [PubMed] [Google Scholar]
  25. Lindemann B. The beginning of fluctuation analysis of epithelial ion transport. J Membr Biol. 1980;54(1):1–11. doi: 10.1007/BF01875371. [DOI] [PubMed] [Google Scholar]
  26. Lindemann B., Van Driessche W. Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science. 1977 Jan 21;195(4275):292–294. doi: 10.1126/science.299785. [DOI] [PubMed] [Google Scholar]
  27. Luckey M., Nikaido H. Specificity of diffusion channels produced by lambda phage receptor protein of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jan;77(1):167–171. doi: 10.1073/pnas.77.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Läuger P. Ion transport through pores: a rate-theory analysis. Biochim Biophys Acta. 1973 Jul 6;311(3):423–441. doi: 10.1016/0005-2736(73)90323-4. [DOI] [PubMed] [Google Scholar]
  29. Meyer J. E., Hofnung M., Schulz G. E. Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. J Mol Biol. 1997 Mar 7;266(4):761–775. doi: 10.1006/jmbi.1996.0823. [DOI] [PubMed] [Google Scholar]
  30. Nekolla S., Andersen C., Benz R. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophys J. 1994 May;66(5):1388–1397. doi: 10.1016/S0006-3495(94)80929-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Newton S. M., Klebba P. E., Michel V., Hofnung M., Charbit A. Topology of the membrane protein LamB by epitope tagging and a comparison with the X-ray model. J Bacteriol. 1996 Jun;178(12):3447–3456. doi: 10.1128/jb.178.12.3447-3456.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Orlik Frank, Andersen Christian, Benz Roland. Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (Maltoporin) channel of Escherichia coli. I. Effect on ion transport. Biophys J. 2002 May;82(5):2466–2475. doi: 10.1016/S0006-3495(02)75589-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Palva E. T. Major outer membrane protein in Salmonella typhimurium induced by maltose. J Bacteriol. 1978 Oct;136(1):286–294. doi: 10.1128/jb.136.1.286-294.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
  35. Schülein K., Andersen C., Benz R. The deletion of 70 amino acids near the N-terminal end of the sucrose-specific porin ScrY causes its functional similarity to LamB in vivo and in vitro. Mol Microbiol. 1995 Aug;17(4):757–767. doi: 10.1111/j.1365-2958.1995.mmi_17040757.x. [DOI] [PubMed] [Google Scholar]
  36. Szmelcman S., Hofnung M. Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol. 1975 Oct;124(1):112–118. doi: 10.1128/jb.124.1.112-118.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Van Driessche W., Lindemann B. Concentration dependence of currents through single sodium-selective pores in frog skin. Nature. 1979 Nov 29;282(5738):519–520. doi: 10.1038/282519a0. [DOI] [PubMed] [Google Scholar]
  38. Van Gelder P., Dumas F., Rosenbusch J. P., Winterhalter M. Oriented channels reveal asymmetric energy barriers for sugar translocation through maltoporin of Escherichia coli. Eur J Biochem. 2000 Jan;267(1):79–84. doi: 10.1046/j.1432-1327.2000.00960.x. [DOI] [PubMed] [Google Scholar]
  39. Verveen A. A., DeFelice L. J. Membrane noise. Prog Biophys Mol Biol. 1974;28:189–265. doi: 10.1016/0079-6107(74)90019-4. [DOI] [PubMed] [Google Scholar]
  40. Wohnsland F., Benz R. 1/f-Noise of open bacterial porin channels. J Membr Biol. 1997 Jul 1;158(1):77–85. doi: 10.1007/s002329900245. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES