Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):345–358. doi: 10.1016/S0006-3495(02)75174-6

Organization of model helical peptides in lipid bilayers: insight into the behavior of single-span protein transmembrane domains.

Simon Sharpe 1, Kathryn R Barber 1, Chris W M Grant 1, David Goodyear 1, Michael R Morrow 1
PMCID: PMC1302152  PMID: 12080125

Abstract

Selectively deuterated transmembrane peptides comprising alternating leucine-alanine subunits were examined in fluid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy in an effort to gain insight into the behavior of membrane proteins. Two groups of peptides were studied: 21-mers having a 17-amino-acid hydrophobic domain calculated to be close in length to the hydrophobic thickness of 1-palmitoyl-2-oleoyl phosphatidylcholine and 26-mers having a 22-amino-acid hydrophobic domain calculated to exceed the membrane hydrophobic thickness. (2)H NMR spectral features similar to ones observed for transmembrane peptides from single-span receptors of higher animal cells were identified which apparently correspond to effectively monomeric peptide. Spectral observations suggested significant distortion of the transmembrane alpha-helix, and/or potential for restriction of rotation about the tilted helix long axis for even simple peptides. Quadrupole splittings arising from the 26-mer were consistent with greater peptide "tilt" than were those of the analogous 21-mer. Quadrupole splittings associated with monomeric peptide were relatively insensitive to concentration and temperature over the range studied, indicating stable average conformations, and a well-ordered rotation axis. At high peptide concentration (6 mol% relative to phospholipid) it appeared that the peptide predicted to be longer than the membrane thickness had a particular tendency toward reversible peptide-peptide interactions occurring on a timescale comparable with or faster than approximately 10(-5) s. This interaction may be direct or lipid-mediated and was manifest as line broadening. Peptide rotational diffusion rates within the membrane, calculated from quadrupolar relaxation times, T(2e), were consistent with such interactions. In the case of the peptide predicted to be equal to the membrane thickness, at low peptide concentration spectral lineshape indicated the additional presence of a population of peptide having rotational motion that was restricted on a timescale of 10(-5) s.

Full Text

The Full Text of this article is available as a PDF (494.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belohorcová K., Davis J. H., Woolf T. B., Roux B. Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. Biophys J. 1997 Dec;73(6):3039–3055. doi: 10.1016/S0006-3495(97)78332-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  3. Brandt-Rauf P. W., Pincus M. R., Monaco R. Conformation of the transmembrane domain of the c-erbB-2 oncogene-encoded protein in its monomeric and dimeric states. J Protein Chem. 1995 Jan;14(1):33–40. doi: 10.1007/BF01902842. [DOI] [PubMed] [Google Scholar]
  4. Byström T., Strandberg E., Kovacs F. A., Cross T. A., Lindblom G. Influence of transmembrane peptides on bilayers of phosphatidylcholines with different acyl chain lengths studied by solid-state NMR. Biochim Biophys Acta. 2000 Dec 20;1509(1-2):335–345. doi: 10.1016/s0005-2736(00)00316-3. [DOI] [PubMed] [Google Scholar]
  5. Choma C., Gratkowski H., Lear J. D., DeGrado W. F. Asparagine-mediated self-association of a model transmembrane helix. Nat Struct Biol. 2000 Feb;7(2):161–166. doi: 10.1038/72440. [DOI] [PubMed] [Google Scholar]
  6. Chothia C., Levitt M., Richardson D. Helix to helix packing in proteins. J Mol Biol. 1981 Jan 5;145(1):215–250. doi: 10.1016/0022-2836(81)90341-7. [DOI] [PubMed] [Google Scholar]
  7. Davis P. J., Keough K. M. Chain arrangements in the gel state and the transition temperatures of phosphatidylcholines. Biophys J. 1985 Dec;48(6):915–918. doi: 10.1016/S0006-3495(85)83854-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deber C. M., Khan A. R., Li Z., Joensson C., Glibowicka M., Wang J. Val-->Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11648–11652. doi: 10.1073/pnas.90.24.11648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gil T., Ipsen J. H., Mouritsen O. G., Sabra M. C., Sperotto M. M., Zuckermann M. J. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):245–266. doi: 10.1016/s0304-4157(98)00022-7. [DOI] [PubMed] [Google Scholar]
  10. Gullick W. J., Bottomley A. C., Lofts F. J., Doak D. G., Mulvey D., Newman R., Crumpton M. J., Sternberg M. J., Campbell I. D. Three dimensional structure of the transmembrane region of the proto-oncogenic and oncogenic forms of the neu protein. EMBO J. 1992 Jan;11(1):43–48. doi: 10.1002/j.1460-2075.1992.tb05025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gurezka R., Laage R., Brosig B., Langosch D. A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J Biol Chem. 1999 Apr 2;274(14):9265–9270. doi: 10.1074/jbc.274.14.9265. [DOI] [PubMed] [Google Scholar]
  12. Harzer U., Bechinger B. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Biochemistry. 2000 Oct 31;39(43):13106–13114. doi: 10.1021/bi000770n. [DOI] [PubMed] [Google Scholar]
  13. Hellstern S., Pegoraro S., Karim C. B., Lustig A., Thomas D. D., Moroder L., Engel J. Sarcolipin, the shorter homologue of phospholamban, forms oligomeric structures in detergent micelles and in liposomes. J Biol Chem. 2001 Jun 18;276(33):30845–30852. doi: 10.1074/jbc.M102495200. [DOI] [PubMed] [Google Scholar]
  14. Javadpour M. M., Eilers M., Groesbeek M., Smith S. O. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J. 1999 Sep;77(3):1609–1618. doi: 10.1016/S0006-3495(99)77009-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones D. H., Barber K. R., Grant C. W. Sequence-related behaviour of transmembrane domains from class I receptor tyrosine kinases. Biochim Biophys Acta. 1998 May 28;1371(2):199–212. doi: 10.1016/s0005-2736(98)00015-7. [DOI] [PubMed] [Google Scholar]
  16. Jones D. H., Barber K. R., VanDerLoo E. W., Grant C. W. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Biochemistry. 1998 Nov 24;37(47):16780–16787. doi: 10.1021/bi981520y. [DOI] [PubMed] [Google Scholar]
  17. Killian J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):401–415. doi: 10.1016/s0304-4157(98)00017-3. [DOI] [PubMed] [Google Scholar]
  18. Killian J. A., Salemink I., de Planque M. R., Lindblom G., Koeppe R. E., 2nd, Greathouse D. V. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry. 1996 Jan 23;35(3):1037–1045. doi: 10.1021/bi9519258. [DOI] [PubMed] [Google Scholar]
  19. Killian J. A., von Heijne G. How proteins adapt to a membrane-water interface. Trends Biochem Sci. 2000 Sep;25(9):429–434. doi: 10.1016/s0968-0004(00)01626-1. [DOI] [PubMed] [Google Scholar]
  20. Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee K. C., Hu W., Cross T. A. 2H NMR determination of the global correlation time of the gramicidin channel in a lipid bilayer. Biophys J. 1993 Sep;65(3):1162–1167. doi: 10.1016/S0006-3495(93)81150-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lemmon M. A., Treutlein H. R., Adams P. D., Brünger A. T., Engelman D. M. A dimerization motif for transmembrane alpha-helices. Nat Struct Biol. 1994 Mar;1(3):157–163. doi: 10.1038/nsb0394-157. [DOI] [PubMed] [Google Scholar]
  23. Macdonald P. M., Seelig J. Dynamic properties of gramicidin A in phospholipid membranes. Biochemistry. 1988 Apr 5;27(7):2357–2364. doi: 10.1021/bi00407a017. [DOI] [PubMed] [Google Scholar]
  24. Marassi F. M., Opella S. J. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000 May;144(1):150–155. doi: 10.1006/jmre.2000.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marassi F. M., Ramamoorthy A., Opella S. J. Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8551–8556. doi: 10.1073/pnas.94.16.8551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morrow M. R., Grant C. W. The EGF receptor transmembrane domain: peptide-peptide interactions in fluid bilayer membranes. Biophys J. 2000 Oct;79(4):2024–2032. doi: 10.1016/S0006-3495(00)76450-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mouritsen O. G., Bloom M. Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct. 1993;22:145–171. doi: 10.1146/annurev.bb.22.060193.001045. [DOI] [PubMed] [Google Scholar]
  28. Nezil F. A., Bloom M. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys J. 1992 May;61(5):1176–1183. doi: 10.1016/S0006-3495(92)81926-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Opella S. J. Protein dynamics by solid state nuclear magnetic resonance. Methods Enzymol. 1986;131:327–361. doi: 10.1016/0076-6879(86)31048-6. [DOI] [PubMed] [Google Scholar]
  30. Orzáez M., Pérez-Payá E., Mingarro I. Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process. Protein Sci. 2000 Jun;9(6):1246–1253. doi: 10.1110/ps.9.6.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pauls K. P., MacKay A. L., Söderman O., Bloom M., Tanjea A. K., Hodges R. S. Dynamic properties of the backbone of an integral membrane polypeptide measured by 2H-NMR. Eur Biophys J. 1985;12(1):1–11. doi: 10.1007/BF00254089. [DOI] [PubMed] [Google Scholar]
  32. Prosser R. S., Daleman S. I., Davis J. H. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin. Biophys J. 1994 May;66(5):1415–1428. doi: 10.1016/S0006-3495(94)80932-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ren J., Lew S., Wang J., London E. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Biochemistry. 1999 May 4;38(18):5905–5912. doi: 10.1021/bi982942a. [DOI] [PubMed] [Google Scholar]
  34. Rigby A. C., Barber K. R., Shaw G. S., Grant C. W. Transmembrane region of the epidermal growth factor receptor: behavior and interactions via 2H NMR. Biochemistry. 1996 Sep 24;35(38):12591–12601. doi: 10.1021/bi9611063. [DOI] [PubMed] [Google Scholar]
  35. Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
  36. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  37. Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  38. Sharpe S., Barber K. R., Grant C. W. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers. Biochemistry. 2000 May 30;39(21):6572–6580. doi: 10.1021/bi000038o. [DOI] [PubMed] [Google Scholar]
  39. Sharpe S., Barber K. R., Grant C. W. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers. Biochemistry. 2000 May 30;39(21):6572–6580. doi: 10.1021/bi000038o. [DOI] [PubMed] [Google Scholar]
  40. Sharpe Simon, Barber Kathryn R., Grant Chris W. M. Evidence of a tendency to self-association of the transmembrane domain of ErbB-2 in fluid phospholipid bilayers. Biochemistry. 2002 Feb 19;41(7):2341–2352. doi: 10.1021/bi011340f. [DOI] [PubMed] [Google Scholar]
  41. Shen L., Bassolino D., Stouch T. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. Biophys J. 1997 Jul;73(1):3–20. doi: 10.1016/S0006-3495(97)78042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Siminovitch D. J. Solid-state NMR studies of proteins: the view from static 2H NMR experiments. Biochem Cell Biol. 1998;76(2-3):411–422. doi: 10.1139/bcb-76-2-3-411. [DOI] [PubMed] [Google Scholar]
  43. Sternberg M. J., Gullick W. J. A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng. 1990 Mar;3(4):245–248. doi: 10.1093/protein/3.4.245. [DOI] [PubMed] [Google Scholar]
  44. Subczynski W. K., Lewis R. N., McElhaney R. N., Hodges R. S., Hyde J. S., Kusumi A. Molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine bilayers containing a transmembrane alpha-helical peptide. Biochemistry. 1998 Mar 3;37(9):3156–3164. doi: 10.1021/bi972148+. [DOI] [PubMed] [Google Scholar]
  45. Ubarretxena-Belandia I., Engelman D. M. Helical membrane proteins: diversity of functions in the context of simple architecture. Curr Opin Struct Biol. 2001 Jun;11(3):370–376. doi: 10.1016/s0959-440x(00)00217-7. [DOI] [PubMed] [Google Scholar]
  46. Wang J., Denny J., Tian C., Kim S., Mo Y., Kovacs F., Song Z., Nishimura K., Gan Z., Fu R. Imaging membrane protein helical wheels. J Magn Reson. 2000 May;144(1):162–167. doi: 10.1006/jmre.2000.2037. [DOI] [PubMed] [Google Scholar]
  47. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  48. Yano Yoshiaki, Takemoto Tomokazu, Kobayashi Satoe, Yasui Hiroyuki, Sakurai Hiromu, Ohashi Wakana, Niwa Miki, Futaki Shiroh, Sugiura Yukio, Matsuzaki Katsumi. Topological stability and self-association of a completely hydrophobic model transmembrane helix in lipid bilayers. Biochemistry. 2002 Mar 5;41(9):3073–3080. doi: 10.1021/bi011161y. [DOI] [PubMed] [Google Scholar]
  49. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 2. Differential scanning calorimetric and FTIR spectroscopic studies of the interaction of Ac-K2-(LA)12-K2-amide with phosphatidylcholine bilayers. Biochemistry. 1995 Feb 21;34(7):2362–2371. doi: 10.1021/bi00007a032. [DOI] [PubMed] [Google Scholar]
  50. de Planque M. R., Goormaghtigh E., Greathouse D. V., Koeppe R. E., 2nd, Kruijtzer J. A., Liskamp R. M., de Kruijff B., Killian J. A. Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry. 2001 Apr 24;40(16):5000–5010. doi: 10.1021/bi000804r. [DOI] [PubMed] [Google Scholar]
  51. de Planque M. R., Greathouse D. V., Koeppe R. E., 2nd, Schäfer H., Marsh D., Killian J. A. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry. 1998 Jun 30;37(26):9333–9345. doi: 10.1021/bi980233r. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES