Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):382–406. doi: 10.1016/S0006-3495(02)75177-1

Accurate representation of B-DNA double helical structure with implicit solvent and counterions.

Lihua Wang 1, Brian E Hingerty 1, A R Srinivasan 1, Wilma K Olson 1, Suse Broyde 1
PMCID: PMC1302155  PMID: 12080128

Abstract

High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babcock M. S., Pednault E. P., Olson W. K. Nucleic acid structure analysis: a users guide to a collection of new analysis programs. J Biomol Struct Dyn. 1993 Dec;11(3):597–628. doi: 10.1080/07391102.1993.10508018. [DOI] [PubMed] [Google Scholar]
  2. Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001 Aug 21;98(18):10037–10041. doi: 10.1073/pnas.181342398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barawkar D. A., Ganesh K. N. Fluorescent d(CGCGAATTCGCG): characterization of major groove polarity and study of minor groove interactions through a major groove semantophore conjugate. Nucleic Acids Res. 1995 Jan 11;23(1):159–164. doi: 10.1093/nar/23.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berger I., Tereshko V., Ikeda H., Marquez V. E., Egli M. Crystal structures of B-DNA with incorporated 2'-deoxy-2'-fluoro-arabino-furanosyl thymines: implications of conformational preorganization for duplex stability. Nucleic Acids Res. 1998 May 15;26(10):2473–2480. doi: 10.1093/nar/26.10.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berman H. M., Olson W. K., Beveridge D. L., Westbrook J., Gelbin A., Demeny T., Hsieh S. H., Srinivasan A. R., Schneider B. The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J. 1992 Sep;63(3):751–759. doi: 10.1016/S0006-3495(92)81649-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beveridge D. L., McConnell K. J. Nucleic acids: theory and computer simulation, Y2K. Curr Opin Struct Biol. 2000 Apr;10(2):182–196. doi: 10.1016/s0959-440x(00)00076-2. [DOI] [PubMed] [Google Scholar]
  8. Cheatham T. E., 3rd, Young M. A. Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Biopolymers. 2000;56(4):232–256. doi: 10.1002/1097-0282(2000)56:4<232::AID-BIP10037>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  9. Cramer C. J., Truhlar D. G. An SCF Solvation Model for the Hydrophobic Effect and Absolute Free Energies of Aqueous Solvation. Science. 1992 Apr 10;256(5054):213–217. doi: 10.1126/science.256.5054.213. [DOI] [PubMed] [Google Scholar]
  10. Cramer Christopher J., Truhlar Donald G. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. Chem Rev. 1999 Aug 11;99(8):2161–2200. doi: 10.1021/cr960149m. [DOI] [PubMed] [Google Scholar]
  11. Daggett V., Kollman P. A. Molecular dynamics simulations of active site mutants of triosephosphate isomerase. Protein Eng. 1990 Aug;3(8):677–690. doi: 10.1093/protein/3.8.677. [DOI] [PubMed] [Google Scholar]
  12. Dickerson R. E., Goodsell D., Kopka M. L. MPD and DNA bending in crystals and in solution. J Mol Biol. 1996 Feb 16;256(1):108–125. doi: 10.1006/jmbi.1996.0071. [DOI] [PubMed] [Google Scholar]
  13. Drew H. R., Wing R. M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E. Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2179–2183. doi: 10.1073/pnas.78.4.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Egli M., Tereshko V., Teplova M., Minasov G., Joachimiak A., Sanishvili R., Weeks C. M., Miller R., Maier M. A., An H. X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution. Biopolymers. 1998;48(4):234–252. doi: 10.1002/(SICI)1097-0282(1998)48:4<234::AID-BIP4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  15. Friedman R. A., Honig B. A free energy analysis of nucleic acid base stacking in aqueous solution. Biophys J. 1995 Oct;69(4):1528–1535. doi: 10.1016/S0006-3495(95)80023-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Friedman R. A., Honig B. The electrostatic contribution to DNA base-stacking interactions. Biopolymers. 1992 Feb;32(2):145–159. doi: 10.1002/bip.360320205. [DOI] [PubMed] [Google Scholar]
  17. Geacintov N. E., Cosman M., Hingerty B. E., Amin S., Broyde S., Patel D. J. NMR solution structures of stereoisometric covalent polycyclic aromatic carcinogen-DNA adduct: principles, patterns, and diversity. Chem Res Toxicol. 1997 Feb;10(2):111–146. doi: 10.1021/tx9601418. [DOI] [PubMed] [Google Scholar]
  18. Harvey S. C., Dlakic M., Griffith J., Harrington R., Park K., Sprous D., Zacharias W. What is the basis of sequence-directed curvature in DNAs containing A tracts? J Biomol Struct Dyn. 1995 Oct;13(2):301–307. doi: 10.1080/07391102.1995.10508841. [DOI] [PubMed] [Google Scholar]
  19. Harvey S. C., Hoekstra P. Dielectric relaxation spectra of water adsorbed on lysozyme. J Phys Chem. 1972 Oct 12;76(21):2987–2994. doi: 10.1021/j100665a011. [DOI] [PubMed] [Google Scholar]
  20. Hawkins T. E., Juttner C. A. Blood cell transplantation. Curr Opin Oncol. 1995 Mar;7(2):122–129. doi: 10.1097/00001622-199503000-00005. [DOI] [PubMed] [Google Scholar]
  21. Hingerty B. E., Figueroa S., Hayden T. L., Broyde S. Prediction of DNA structure from sequence: a build-up technique. Biopolymers. 1989 Jul;28(7):1195–1222. doi: 10.1002/bip.360280703. [DOI] [PubMed] [Google Scholar]
  22. Hoffmann G. R., Fuchs R. P. Mechanisms of frameshift mutations: insight from aromatic amines. Chem Res Toxicol. 1997 Apr;10(4):347–359. doi: 10.1021/tx960128n. [DOI] [PubMed] [Google Scholar]
  23. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  24. Hunter C. A., Lu X. J. DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures. J Mol Biol. 1997 Feb 7;265(5):603–619. doi: 10.1006/jmbi.1996.0755. [DOI] [PubMed] [Google Scholar]
  25. Ikeda H., Fernandez R., Wilk A., Barchi J. J., Jr, Huang X., Marquez V. E. The effect of two antipodal fluorine-induced sugar puckers on the conformation and stability of the Dickerson-Drew dodecamer duplex [d(CGCGAATTCGCG)]2. Nucleic Acids Res. 1998 May 1;26(9):2237–2244. doi: 10.1093/nar/26.9.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jayaram B., Sharp K. A., Honig B. The electrostatic potential of B-DNA. Biopolymers. 1989 May;28(5):975–993. doi: 10.1002/bip.360280506. [DOI] [PubMed] [Google Scholar]
  27. Jin R., Breslauer K. J. Characterization of the minor groove environment in a drug-DNA complex: bisbenzimide bound to the poly[d(AT)].poly[d(AT)]duplex. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8939–8942. doi: 10.1073/pnas.85.23.8939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kollman P. A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000 Dec;33(12):889–897. doi: 10.1021/ar000033j. [DOI] [PubMed] [Google Scholar]
  29. Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
  30. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  31. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  32. Liu J., Malinina L., Huynh-Dinh T., Subirana J. A. The structure of the most studied DNA fragment changes under the influence of ions: a new packing of d(CGCGAATTCGCG). FEBS Lett. 1998 Nov 6;438(3):211–214. doi: 10.1016/s0014-5793(98)01295-2. [DOI] [PubMed] [Google Scholar]
  33. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  34. Mao B., Hingerty B. E., Broyde S., Patel D. J. Solution structure of the aminofluorene [AF]-external conformer of the anti-[AF]-C8-dG adduct opposite dC in a DNA duplex. Biochemistry. 1998 Jan 6;37(1):95–106. doi: 10.1021/bi972258g. [DOI] [PubMed] [Google Scholar]
  35. Mao B., Hingerty B. E., Broyde S., Patel D. J. Solution structure of the aminofluorene [AF]-intercalated conformer of the syn-[AF]-C8-dG adduct opposite dC in a DNA duplex. Biochemistry. 1998 Jan 6;37(1):81–94. doi: 10.1021/bi972257o. [DOI] [PubMed] [Google Scholar]
  36. Mazur J., Jernigan R. L. Distance-dependent dielectric constants and their application to double-helical DNA. Biopolymers. 1991 Nov;31(13):1615–1629. doi: 10.1002/bip.360311316. [DOI] [PubMed] [Google Scholar]
  37. McConnell K. J., Beveridge D. L. DNA structure: what's in charge? J Mol Biol. 2000 Dec 15;304(5):803–820. doi: 10.1006/jmbi.2000.4167. [DOI] [PubMed] [Google Scholar]
  38. Mehler E. L., Guarnieri F. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys J. 1999 Jul;77(1):3–22. doi: 10.1016/S0006-3495(99)76868-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Olson W. K., Flory P. J. Spatial configuration of polynucleotide chains. II. Conformational energies and the average dimensions of polyribonucleotides. Biopolymers. 1972 Jan;11(1):25–56. doi: 10.1002/bip.1972.360110103. [DOI] [PubMed] [Google Scholar]
  40. Olson W. K., Zhurkin V. B. Modeling DNA deformations. Curr Opin Struct Biol. 2000 Jun;10(3):286–297. doi: 10.1016/s0959-440x(00)00086-5. [DOI] [PubMed] [Google Scholar]
  41. Ornstein R. L., Rein R. Energetics of intercalation specificity. I. Backbone unwinding. Biopolymers. 1979 May;18(5):1277–1291. doi: 10.1002/bip.1979.360180517. [DOI] [PubMed] [Google Scholar]
  42. Patel D. J., Mao B., Gu Z., Hingerty B. E., Gorin A., Basu A. K., Broyde S. Nuclear magnetic resonance solution structures of covalent aromatic amine-DNA adducts and their mutagenic relevance. Chem Res Toxicol. 1998 May;11(5):391–407. doi: 10.1021/tx9702143. [DOI] [PubMed] [Google Scholar]
  43. Pennock B. E., Schwan H. P. Further observations on the electrical properties of hemoglobin-bound water. J Phys Chem. 1969 Aug;73(8):2600–2610. doi: 10.1021/j100842a024. [DOI] [PubMed] [Google Scholar]
  44. Ramachandran G. N., Srinivasan R. Effective dielectric constant values to be used in biopolymer energy calculations. Indian J Biochem. 1970 Jun;7(2):95–97. [PubMed] [Google Scholar]
  45. Ramstein J., Lavery R. Energetic coupling between DNA bending and base pair opening. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7231–7235. doi: 10.1073/pnas.85.19.7231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. SCOTT R. A., SCHERAGA H. A. METHOD FOR CALCULATION INTERNAL ROTATION BARRIERS. J Chem Phys. 1965 Mar 15;42:2209–2215. doi: 10.1063/1.1696269. [DOI] [PubMed] [Google Scholar]
  47. Sato T. Another method for specifying furanose ring puckering. Nucleic Acids Res. 1983 Jul 25;11(14):4933–4938. doi: 10.1093/nar/11.14.4933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shapiro R., Ellis S., Hingerty B. E., Broyde S. Effect of ring size on conformations of aromatic amine-DNA adducts: the aniline-C8 guanine adduct resides in the B-DNA major groove. Chem Res Toxicol. 1998 Apr;11(4):335–341. doi: 10.1021/tx970211q. [DOI] [PubMed] [Google Scholar]
  49. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  50. Shatzky-Schwartz M., Arbuckle N. D., Eisenstein M., Rabinovich D., Bareket-Samish A., Haran T. E., Luisi B. F., Shakked Z. X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature. J Mol Biol. 1997 Apr 4;267(3):595–623. doi: 10.1006/jmbi.1996.0878. [DOI] [PubMed] [Google Scholar]
  51. Shui X., McFail-Isom L., Hu G. G., Williams L. D. The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry. 1998 Jun 9;37(23):8341–8355. doi: 10.1021/bi973073c. [DOI] [PubMed] [Google Scholar]
  52. Shui X., Sines C. C., McFail-Isom L., VanDerveer D., Williams L. D. Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry. 1998 Dec 1;37(48):16877–16887. doi: 10.1021/bi982063o. [DOI] [PubMed] [Google Scholar]
  53. Singh S. B., Hingerty B. E., Singh U. C., Greenberg J. P., Geacintov N. E., Broyde S. Structures of the (+)- and (-)-trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyre ne adducts to guanine-N2 in a duplex dodecamer. Cancer Res. 1991 Jul 1;51(13):3482–3492. [PubMed] [Google Scholar]
  54. Sponer J., Kypr J. Theoretical analysis of the base stacking in DNA: choice of the force field and a comparison with the oligonucleotide crystal structures. J Biomol Struct Dyn. 1993 Oct;11(2):277–292. doi: 10.1080/07391102.1993.10508726. [DOI] [PubMed] [Google Scholar]
  55. Subirana J. A., Faria T. Influence of sequence on the conformation of the B-DNA helix. Biophys J. 1997 Jul;73(1):333–338. doi: 10.1016/S0006-3495(97)78073-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Takashima S., Schwan H. P. Dielectric dispersion of crystalline powders of amino acids, peptides, and proteins. J Phys Chem. 1965 Dec;69(12):4176–4182. doi: 10.1021/j100782a019. [DOI] [PubMed] [Google Scholar]
  57. Tsui V., Case D. A. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers. 2000;56(4):275–291. doi: 10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  58. Westhof E. Re-refinement of the B-dodecamer d(CGCGAATTCGCG) with a comparative analysis of the solvent in it and in the Z-hexamer d(5BrCG5BrCG5BrCG). J Biomol Struct Dyn. 1987 Dec;5(3):581–600. doi: 10.1080/07391102.1987.10506414. [DOI] [PubMed] [Google Scholar]
  59. Wing R., Drew H., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E. Crystal structure analysis of a complete turn of B-DNA. Nature. 1980 Oct 23;287(5784):755–758. doi: 10.1038/287755a0. [DOI] [PubMed] [Google Scholar]
  60. Yan S., Shapiro R., Geacintov N. E., Broyde S. Stereochemical, structural, and thermodynamic origins of stability differences between stereoisomeric benzo[a]pyrene diol epoxide deoxyadenosine adducts in a DNA mutational hot spot sequence. J Am Chem Soc. 2001 Jul 25;123(29):7054–7066. doi: 10.1021/ja0043035. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES