Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):433–457. doi: 10.1016/S0006-3495(02)75181-3

Light harvesting in photosystem I: modeling based on the 2.5-A structure of photosystem I from Synechococcus elongatus.

Martin Byrdin 1, Patrick Jordan 1, Norbert Krauss 1, Petra Fromme 1, Dietmar Stehlik 1, Eberhard Schlodder 1
PMCID: PMC1302159  PMID: 12080132

Abstract

The structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus has been recently resolved by x-ray crystallography to 2.5-A resolution. Besides the reaction center, photosystem I consists also of a core antenna containing 90 chlorophyll and 22 carotenoid molecules. It is their function to harvest solar energy and to transfer this energy to the reaction center (RC) where the excitation energy is converted into a charge separated state. Methods of steady-state optical spectroscopy such as absorption, linear, and circular dichroism have been applied to obtain information on the spectral properties of the complex, whereas transient absorption and fluorescence studies reported in the literature provide information on the dynamics of the excitation energy transfer. On the basis of the structure, the spectral properties and the energy transfer kinetics are simultaneously modeled by application of excitonic coupling theory to reveal relationships between structure and function. A spectral assignment of the 96 chlorophylls is suggested that allows us to reproduce both optical spectra and transfer and emission spectra and lifetimes of the photosystem I complex from S. elongatus. The model calculation allowed to study the influence of the following parameters on the excited state dynamics: the orientation factor, the heterogeneous site energies, the modifications arising from excitonic coupling (redistribution of oscillator strength, energetic splitting, reorientation of transition dipoles), and presence or absence of the linker cluster chlorophylls between antenna and reaction center. For the Förster radius and the intrinsic primary charge separation rate, the following values have been obtained: R(0) = 7.8 nm and k(CS) = 0.9 ps(-1). Variations of these parameters indicate that the excited state dynamics is neither pure trap limited, nor pure transfer (to-the-trap) limited but seems to be rather balanced.

Full Text

The Full Text of this article is available as a PDF (665.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byrdin M., Rimke I., Schlodder E., Stehlik D., Roelofs T. A. Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J. 2000 Aug;79(2):992–1007. doi: 10.1016/S0006-3495(00)76353-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Colbow K. Energy transfer in photosynthesis. Biochim Biophys Acta. 1973 Sep 26;314(3):320–327. doi: 10.1016/0005-2728(73)90116-3. [DOI] [PubMed] [Google Scholar]
  3. Cometta A., Zucchelli G., Karapetyan N. V., Engelmann E., Garlaschi F. M., Jennings R. C. Thermal behavior of long wavelength absorption transitions in Spirulina platensis photosystem I trimers. Biophys J. 2000 Dec;79(6):3235–3243. doi: 10.1016/S0006-3495(00)76556-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Durrant J. R., Klug D. R., Kwa S. L., van Grondelle R., Porter G., Dekker J. P. A multimer model for P680, the primary electron donor of photosystem II. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4798–4802. doi: 10.1073/pnas.92.11.4798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engelmann E., Tagliabue T., Karapetyan N. V., Garlaschi F. M., Zucchelli G., Jennings R. C. CD spectroscopy provides evidence for excitonic interactions involving red-shifted chlorophyll forms in photosystem I. FEBS Lett. 2001 Jun 15;499(1-2):112–115. doi: 10.1016/s0014-5793(01)02533-9. [DOI] [PubMed] [Google Scholar]
  6. Fetisova Z., Freiberg A., Mauring K., Novoderezhkin V., Taisova A., Timpmann K. Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J. 1996 Aug;71(2):995–1010. doi: 10.1016/S0006-3495(96)79301-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gobets B., van Stokkum I. H., Rögner M., Kruip J., Schlodder E., Karapetyan N. V., Dekker J. P., van Grondelle R. Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J. 2001 Jul;81(1):407–424. doi: 10.1016/S0006-3495(01)75709-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hastings G., Reed L. J., Lin S., Blankenship R. E. Excited state dynamics in photosystem I: effects of detergent and excitation wavelength. Biophys J. 1995 Nov;69(5):2044–2055. doi: 10.1016/S0006-3495(95)80074-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holzwarth A. R., Schatz G., Brock H., Bittersmann E. Energy transfer and charge separation kinetics in photosystem I: Part 1: Picosecond transient absorption and fluorescence study of cyanobacterial photosystem I particles. Biophys J. 1993 Jun;64(6):1813–1826. doi: 10.1016/S0006-3495(93)81552-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001 Jun 21;411(6840):909–917. doi: 10.1038/35082000. [DOI] [PubMed] [Google Scholar]
  12. Karapetyan N. V., Dorra D., Schweitzer G., Bezsmertnaya I. N., Holzwarth A. R. Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry. 1997 Nov 11;36(45):13830–13837. doi: 10.1021/bi970386z. [DOI] [PubMed] [Google Scholar]
  13. Knapp E. W., Fischer S. F., Zinth W., Sander M., Kaiser W., Deisenhofer J., Michel H. Analysis of optical spectra from single crystals of Rhodopseudomonas viridis reaction centers. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8463–8467. doi: 10.1073/pnas.82.24.8463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koepke J., Hu X., Muenke C., Schulten K., Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996 May 15;4(5):581–597. doi: 10.1016/s0969-2126(96)00063-9. [DOI] [PubMed] [Google Scholar]
  15. Kratky C., Dunitz J. D. Ordered aggregation states of chlorophyll a and some derivatives. J Mol Biol. 1977 Jun 25;113(2):431–442. doi: 10.1016/0022-2836(77)90151-6. [DOI] [PubMed] [Google Scholar]
  16. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  17. Melkozernov A. N., Lin S., Blankenship R. E. Femtosecond transient spectroscopy and excitonic interactions in Photosystem I. J Phys Chem B. 2000 Feb 24;104(7):1651–1656. doi: 10.1021/jp993257w. [DOI] [PubMed] [Google Scholar]
  18. Pålsson L. O., Flemming C., Gobets B., van Grondelle R., Dekker J. P., Schlodder E. Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J. 1998 May;74(5):2611–2622. doi: 10.1016/S0006-3495(98)77967-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Savikhin S., Xu W., Chitnis P. R., Struve W. S. Ultrafast primary processes in PS I from Synechocystis sp. PCC 6803: roles of P700 and A(0). Biophys J. 2000 Sep;79(3):1573–1586. doi: 10.1016/S0006-3495(00)76408-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Savikhin S., Xu W., Soukoulis V., Chitnis P. R., Struve W. S. Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. Biophys J. 1999 Jun;76(6):3278–3288. doi: 10.1016/S0006-3495(99)77480-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schubert W. D., Klukas O., Krauss N., Saenger W., Fromme P., Witt H. T. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. J Mol Biol. 1997 Oct 10;272(5):741–769. doi: 10.1006/jmbi.1997.1269. [DOI] [PubMed] [Google Scholar]
  22. Shipman L. L., Cotton T. M., Norris J. R., Katz J. J. An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer,and oligomers in solution. J Am Chem Soc. 1976 Dec 8;98(25):8222–8230. doi: 10.1021/ja00441a056. [DOI] [PubMed] [Google Scholar]
  23. Soukoulis V., Savikhin S., Xu W., Chitnis P. R., Struve W. S. Electronic spectra of PS I mutants: the peripheral subunits do not bind red chlorophylls in Synechocystis sp. PCC 6803. Biophys J. 1999 May;76(5):2711–2715. doi: 10.1016/S0006-3495(99)77423-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trinkunas G., Holzwarth A. R. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem I core antenna/reaction center complexes. Biophys J. 1996 Jul;71(1):351–364. doi: 10.1016/S0006-3495(96)79233-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zouni A., Witt H. T., Kern J., Fromme P., Krauss N., Saenger W., Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature. 2001 Feb 8;409(6821):739–743. doi: 10.1038/35055589. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES