Abstract
The structure of a 36-amino-acid-long N-terminal fragment of human phospholamban phosphorylated at Ser-16 and Thr-17 and Cys-36-->Ser mutated was determined from nuclear magnetic resonance data in aqueous solution containing 30% trifluoroethanol. The peptide assumes a conformation characterized by two alpha-helices connected by an irregular strand, which comprises the amino acids from Arg-13 to Pro-21. The proline is in a trans conformation. The two phosphate groups on Ser-16 and Thr-17 are shown to interact preferably with the side chains of Arg-14 and Arg-13, respectively. The helix comprising amino acids 22 to 35 is well determined (the rmsd for the backbone atoms, calculated for a family of 24 nuclear magnetic resonance structures is 0.69 +/- 0.28 A). The structures of phosphorylated and unphosphorylated phospholamban are compared, and the effect of the two phosphate groups on the relative spatial position of the two helices is examined. The packing parameters Omega (interhelical angle) and d (minimal interhelical distance) are calculated: in the case of the phosphorylated phospholamban, Omega = 100 +/- 35 degrees and d = 7.9 +/- 4.6 A, whereas for the unphosphorylated peptide the values are Omega = 80 +/- 20 degrees and d = 7.0 +/- 4.0 A. We conclude that 1) the phosphorylation does not affect the structure of the C terminus between residues 21 and 36 and 2) the phosphorylated phospholamban has more loose helical packing than the nonphosphorylated.
Full Text
The Full Text of this article is available as a PDF (238.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chothia C., Levitt M., Richardson D. Helix to helix packing in proteins. J Mol Biol. 1981 Jan 5;145(1):215–250. doi: 10.1016/0022-2836(81)90341-7. [DOI] [PubMed] [Google Scholar]
- Cornea R. L., Jones L. R., Autry J. M., Thomas D. D. Mutation and phosphorylation change the oligomeric structure of phospholamban in lipid bilayers. Biochemistry. 1997 Mar 11;36(10):2960–2967. doi: 10.1021/bi961955q. [DOI] [PubMed] [Google Scholar]
- Hoffmann R., Reichert I., Wachs W. O., Zeppezauer M., Kalbitzer H. R. 1H and 31P NMR spectroscopy of phosphorylated model peptides. Int J Pept Protein Res. 1994 Sep;44(3):193–198. doi: 10.1111/j.1399-3011.1994.tb00160.x. [DOI] [PubMed] [Google Scholar]
- Iwasa T., Inoue N., Miyamoto E. Identification of a calmodulin-dependent protein kinase in the cardiac cytosol, which phosphorylates phospholamban in the sarcoplasmic reticulum. J Biochem. 1985 Aug;98(2):577–580. doi: 10.1093/oxfordjournals.jbchem.a135313. [DOI] [PubMed] [Google Scholar]
- Jackson W. A., Colyer J. Translation of Ser16 and Thr17 phosphorylation of phospholamban into Ca 2+-pump stimulation. Biochem J. 1996 May 15;316(Pt 1):201–207. doi: 10.1042/bj3160201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadambi V. J., Ponniah S., Harrer J. M., Hoit B. D., Dorn G. W., 2nd, Walsh R. A., Kranias E. G. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest. 1996 Jan 15;97(2):533–539. doi: 10.1172/JCI118446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karczewski P., Bartel S., Haase H., Krause E. G. Isoproterenol induces both cAMP- and calcium-dependent phosphorylation of phospholamban in canine heart in vivo. Biomed Biochim Acta. 1987;46(8-9):S433–S439. [PubMed] [Google Scholar]
- Levine B. A., Patchell V. B., Sharma P., Gao Y., Bigelow D. J., Yao Q., Goh S., Colyer J., Drago G. A., Perry S. V. Sites on the cytoplasmic region of phospholamban involved in interaction with the calcium-activated ATPase of the sarcoplasmic reticulum. Eur J Biochem. 1999 Sep;264(3):905–913. doi: 10.1046/j.1432-1327.1999.00688.x. [DOI] [PubMed] [Google Scholar]
- Luo W., Chu G., Sato Y., Zhou Z., Kadambi V. J., Kranias E. G. Transgenic approaches to define the functional role of dual site phospholamban phosphorylation. J Biol Chem. 1998 Feb 20;273(8):4734–4739. doi: 10.1074/jbc.273.8.4734. [DOI] [PubMed] [Google Scholar]
- Luo W., Grupp I. L., Harrer J., Ponniah S., Grupp G., Duffy J. J., Doetschman T., Kranias E. G. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res. 1994 Sep;75(3):401–409. doi: 10.1161/01.res.75.3.401. [DOI] [PubMed] [Google Scholar]
- Mortishire-Smith R. J., Broughton H., Garsky V. M., Mayer E. J., Johnson R. G., Jr Structural studies on phospholamban and implications for regulation of the Ca(2+)-ATPase. Ann N Y Acad Sci. 1998 Sep 16;853:63–78. doi: 10.1111/j.1749-6632.1998.tb08257.x. [DOI] [PubMed] [Google Scholar]
- Mortishire-Smith R. J., Pitzenberger S. M., Burke C. J., Middaugh C. R., Garsky V. M., Johnson R. G. Solution structure of the cytoplasmic domain of phopholamban: phosphorylation leads to a local perturbation in secondary structure. Biochemistry. 1995 Jun 13;34(23):7603–7613. doi: 10.1021/bi00023a006. [DOI] [PubMed] [Google Scholar]
- Paul R. J. The role of phospholamban and SERCA3 in regulation of smooth muscle-endothelial cell signalling mechanisms: evidence from gene-ablated mice. Acta Physiol Scand. 1998 Dec;164(4):589–597. doi: 10.1111/j.1365-201x.1998.tb10704.x. [DOI] [PubMed] [Google Scholar]
- Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
- Pollesello P., Annila A., Ovaska M. Structure of the 1-36 amino-terminal fragment of human phospholamban by nuclear magnetic resonance and modeling of the phospholamban pentamer. Biophys J. 1999 Apr;76(4):1784–1795. doi: 10.1016/S0006-3495(99)77339-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quirk P. G., Patchell V. B., Colyer J., Drago G. A., Gao Y. Conformational effects of serine phosphorylation in phospholamban peptides. Eur J Biochem. 1996 Feb 15;236(1):85–91. doi: 10.1111/j.1432-1033.1996.00085.x. [DOI] [PubMed] [Google Scholar]
- Simmerman H. K., Kobayashi Y. M., Autry J. M., Jones L. R. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem. 1996 Mar 8;271(10):5941–5946. doi: 10.1074/jbc.271.10.5941. [DOI] [PubMed] [Google Scholar]
- Sutliff R. L., Hoying J. B., Kadambi V. J., Kranias E. G., Paul R. J. Phospholamban is present in endothelial cells and modulates endothelium-dependent relaxation. Evidence from phospholamban gene-ablated mice. Circ Res. 1999 Feb 19;84(3):360–364. doi: 10.1161/01.res.84.3.360. [DOI] [PubMed] [Google Scholar]
- Tada M., Kadoma M. Regulation of the Ca2+ pump ATPase by cAMP-dependent phosphorylation of phospholamban. Bioessays. 1989 May;10(5):157–163. doi: 10.1002/bies.950100505. [DOI] [PubMed] [Google Scholar]
- Tholey A., Lindemann A., Kinzel V., Reed J. Direct effects of phosphorylation on the preferred backbone conformation of peptides: a nuclear magnetic resonance study. Biophys J. 1999 Jan;76(1 Pt 1):76–87. doi: 10.1016/S0006-3495(99)77179-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem. 1993 Feb 5;268(4):2809–2815. [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]