Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):491–501. doi: 10.1016/S0006-3495(02)75185-0

An automated two-dimensional optical force clamp for single molecule studies.

Matthew J Lang 1, Charles L Asbury 1, Joshua W Shaevitz 1, Steven M Block 1
PMCID: PMC1302163  PMID: 12080136

Abstract

We constructed a next-generation optical trapping instrument to study the motility of single motor proteins, such as kinesin moving along a microtubule. The instrument can be operated as a two-dimensional force clamp, applying loads of fixed magnitude and direction to motor-coated microscopic beads moving in vitro. Flexibility and automation in experimental design are achieved by computer control of both the trap position, via acousto-optic deflectors, and the sample position, using a three-dimensional piezo stage. Each measurement is preceded by an initialization sequence, which includes adjustment of bead height relative to the coverslip using a variant of optical force microscopy (to +/-4 nm), a two-dimensional raster scan to calibrate position detector response, and adjustment of bead lateral position relative to the microtubule substrate (to +/-3 nm). During motor-driven movement, both the trap and stage are moved dynamically to apply constant force while keeping the trapped bead within the calibrated range of the detector. We present details of force clamp operation and preliminary data showing kinesin motor movement subject to diagonal and forward loads.

Full Text

The Full Text of this article is available as a PDF (596.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allersma M. W., Gittes F., deCastro M. J., Stewart R. J., Schmidt C. F. Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys J. 1998 Feb;74(2 Pt 1):1074–1085. doi: 10.1016/S0006-3495(98)74031-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Block S. M., Goldstein L. S., Schnapp B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature. 1990 Nov 22;348(6299):348–352. doi: 10.1038/348348a0. [DOI] [PubMed] [Google Scholar]
  3. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  4. Florin E. L., Pralle A., Hörber J. K., Stelzer E. H. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J Struct Biol. 1997 Jul;119(2):202–211. doi: 10.1006/jsbi.1997.3880. [DOI] [PubMed] [Google Scholar]
  5. Kuo S. C., McGrath J. L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature. 2000 Oct 26;407(6807):1026–1029. doi: 10.1038/35039544. [DOI] [PubMed] [Google Scholar]
  6. Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
  7. Molloy J. E. Optical chopsticks: digital synthesis of multiple optical traps. Methods Cell Biol. 1998;55:205–216. doi: 10.1016/s0091-679x(08)60410-0. [DOI] [PubMed] [Google Scholar]
  8. Neuman K. C., Chadd E. H., Liou G. F., Bergman K., Block S. M. Characterization of photodamage to Escherichia coli in optical traps. Biophys J. 1999 Nov;77(5):2856–2863. doi: 10.1016/S0006-3495(99)77117-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pralle A., Prummer M., Florin E. L., Stelzer E. H., Hörber J. K. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech. 1999 Mar 1;44(5):378–386. doi: 10.1002/(SICI)1097-0029(19990301)44:5<378::AID-JEMT10>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  10. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  11. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  12. Rice S., Lin A. W., Safer D., Hart C. L., Naber N., Carragher B. O., Cain S. M., Pechatnikova E., Wilson-Kubalek E. M., Whittaker M. A structural change in the kinesin motor protein that drives motility. Nature. 1999 Dec 16;402(6763):778–784. doi: 10.1038/45483. [DOI] [PubMed] [Google Scholar]
  13. Rief M., Rock R. S., Mehta A. D., Mooseker M. S., Cheney R. E., Spudich J. A. Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9482–9486. doi: 10.1073/pnas.97.17.9482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rohrbach A., Stelzer E. H. Optical trapping of dielectric particles in arbitrary fields. J Opt Soc Am A Opt Image Sci Vis. 2001 Apr;18(4):839–853. doi: 10.1364/josaa.18.000839. [DOI] [PubMed] [Google Scholar]
  15. Sack S., Müller J., Marx A., Thormählen M., Mandelkow E. M., Brady S. T., Mandelkow E. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry. 1997 Dec 23;36(51):16155–16165. doi: 10.1021/bi9722498. [DOI] [PubMed] [Google Scholar]
  16. Schnitzer M. J., Block S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997 Jul 24;388(6640):386–390. doi: 10.1038/41111. [DOI] [PubMed] [Google Scholar]
  17. Sosa H., Peterman E. J., Moerner W. E., Goldstein L. S. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat Struct Biol. 2001 Jun;8(6):540–544. doi: 10.1038/88611. [DOI] [PubMed] [Google Scholar]
  18. Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
  19. Svoboda K., Block S. M. Force and velocity measured for single kinesin molecules. Cell. 1994 Jun 3;77(5):773–784. doi: 10.1016/0092-8674(94)90060-4. [DOI] [PubMed] [Google Scholar]
  20. Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
  21. Tokunaga M., Kitamura K., Saito K., Iwane A. H., Yanagida T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun. 1997 Jun 9;235(1):47–53. doi: 10.1006/bbrc.1997.6732. [DOI] [PubMed] [Google Scholar]
  22. Vale R. D., Milligan R. A. The way things move: looking under the hood of molecular motor proteins. Science. 2000 Apr 7;288(5463):88–95. doi: 10.1126/science.288.5463.88. [DOI] [PubMed] [Google Scholar]
  23. Veigel C., Bartoo M. L., White D. C., Sparrow J. C., Molloy J. E. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J. 1998 Sep;75(3):1424–1438. doi: 10.1016/S0006-3495(98)74061-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Visscher K., Block S. M. Versatile optical traps with feedback control. Methods Enzymol. 1998;298:460–489. doi: 10.1016/s0076-6879(98)98040-5. [DOI] [PubMed] [Google Scholar]
  25. Visscher K., Schnitzer M. J., Block S. M. Single kinesin molecules studied with a molecular force clamp. Nature. 1999 Jul 8;400(6740):184–189. doi: 10.1038/22146. [DOI] [PubMed] [Google Scholar]
  26. Wang M. D., Schnitzer M. J., Yin H., Landick R., Gelles J., Block S. M. Force and velocity measured for single molecules of RNA polymerase. Science. 1998 Oct 30;282(5390):902–907. doi: 10.1126/science.282.5390.902. [DOI] [PubMed] [Google Scholar]
  27. Warshaw D. M., Guilford W. H., Freyzon Y., Krementsova E., Palmiter K. A., Tyska M. J., Baker J. E., Trybus K. M. The light chain binding domain of expressed smooth muscle heavy meromyosin acts as a mechanical lever. J Biol Chem. 2000 Nov 24;275(47):37167–37172. doi: 10.1074/jbc.M006438200. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES