Abstract
The structural dynamics of pulmonary surfactant was studied by epifluorescence light microscopy at the air-water interface of a bubble as a model close to nature for an alveolus. Small unilamellar vesicles of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, a small amount of a fluorescent dipalmitoylphosphatidylcholine-analog, and surfactant-associated protein C were injected into the buffer solution. They aggregated to large clusters in the presence of Ca(2+) and adsorbed from these units to the interface. This gave rise to an interfacial film that eventually became fully condensed with dark, polygonal domains in a fluorescent matrix. When now the bubble size was increased or decreased, respectively, the film expanded or contracted. Upon expansion of the bubble, the dark areas became larger to the debit of the bright matrix and reversed upon contraction. We were able to observe single domains during the whole process. The film remained condensed, even when the interface was increased to twice its original size. From comparison with scanning force microscopy directly at the air-water interface, the fluorescent areas proved to be lipid bilayers associated with the (dark) monolayer. In the lung, such multilayer phase acts as a reservoir that guarantees a full molecular coverage of the alveolar interface during the breathing cycle and provides mechanical stability to the film.
Full Text
The Full Text of this article is available as a PDF (352.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amrein M., von Nahmen A., Sieber M. A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant. Eur Biophys J. 1997;26(5):349–357. doi: 10.1007/s002490050089. [DOI] [PubMed] [Google Scholar]
- BROWN E. S. ISOLATION AND ASSAY OF DIPALMITYL LECITHIN IN LUNG EXTRACTS. Am J Physiol. 1964 Aug;207:402–406. doi: 10.1152/ajplegacy.1964.207.2.402. [DOI] [PubMed] [Google Scholar]
- Bangham A. D., Morley C. J., Phillips M. C. The physical properties of an effective lung surfactant. Biochim Biophys Acta. 1979 Jun 21;573(3):552–556. doi: 10.1016/0005-2760(79)90229-7. [DOI] [PubMed] [Google Scholar]
- Bourdos N., Kollmer F., Benninghoven A., Ross M., Sieber M., Galla H. J. Analysis of lung surfactant model systems with time-of-flight secondary ion mass spectrometry. Biophys J. 2000 Jul;79(1):357–369. doi: 10.1016/S0006-3495(00)76297-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curstedt T., Johansson J., Persson P., Eklund A., Robertson B., Löwenadler B., Jörnvall H. Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2985–2989. doi: 10.1073/pnas.87.8.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding J., Takamoto D. Y., von Nahmen A., Lipp M. M., Lee K. Y., Waring A. J., Zasadzinski J. A. Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys J. 2001 May;80(5):2262–2272. doi: 10.1016/S0006-3495(01)76198-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enhorning G. Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol Respir Environ Exerc Physiol. 1977 Aug;43(2):198–203. doi: 10.1152/jappl.1977.43.2.198. [DOI] [PubMed] [Google Scholar]
- Grunder R., Gehr P., Bachofen H., Schürch S., Siegenthaler H. Structures of surfactant films: a scanning force microscopy study. Eur Respir J. 1999 Dec;14(6):1290–1296. doi: 10.1183/09031936.99.14612909. [DOI] [PubMed] [Google Scholar]
- Johansson J., Curstedt T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997 Mar 15;244(3):675–693. doi: 10.1111/j.1432-1033.1997.00675.x. [DOI] [PubMed] [Google Scholar]
- Johansson J., Curstedt T., Robertson B. The proteins of the surfactant system. Eur Respir J. 1994 Feb;7(2):372–391. doi: 10.1183/09031936.94.07020372. [DOI] [PubMed] [Google Scholar]
- Johansson J., Szyperski T., Curstedt T., Wüthrich K. The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry. 1994 May 17;33(19):6015–6023. doi: 10.1021/bi00185a042. [DOI] [PubMed] [Google Scholar]
- Knebel D., Sieber M., Reichelt R., Galla H-J, Amrein M. Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant. Biophys J. 2002 Jan;82(1 Pt 1):474–480. doi: 10.1016/S0006-3495(02)75412-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer A., Wintergalen A., Sieber M., Galla H. J., Amrein M., Guckenberger R. Distribution of the surfactant-associated protein C within a lung surfactant model film investigated by near-field optical microscopy. Biophys J. 2000 Jan;78(1):458–465. doi: 10.1016/S0006-3495(00)76608-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krol S., Ross M., Sieber M., Künneke S., Galla H. J., Janshoff A. Formation of three-dimensional protein-lipid aggregates in monolayer films induced by surfactant protein B. Biophys J. 2000 Aug;79(2):904–918. doi: 10.1016/S0006-3495(00)76346-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubitscheck U., Peters R. Localization of single nuclear pore complexes by confocal laser scanning microscopy and analysis of their distribution. Methods Cell Biol. 1998;53:79–98. doi: 10.1016/s0091-679x(08)60875-4. [DOI] [PubMed] [Google Scholar]
- Möhwald H. Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu Rev Phys Chem. 1990;41:441–476. doi: 10.1146/annurev.pc.41.100190.002301. [DOI] [PubMed] [Google Scholar]
- Nag K., Munro J. G., Hearn S. A., Rasmusson J., Petersen N. O., Possmayer F. Correlated atomic force and transmission electron microscopy of nanotubular structures in pulmonary surfactant. J Struct Biol. 1999 Jun 1;126(1):1–15. doi: 10.1006/jsbi.1999.4089. [DOI] [PubMed] [Google Scholar]
- Nag K., Perez-Gil J., Cruz A., Keough K. M. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers. Biophys J. 1996 Jul;71(1):246–256. doi: 10.1016/S0006-3495(96)79221-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Notter R. H., Tabak S. A., Mavis R. D. Surface properties of binary mixtures of some pulmonary surfactant components. J Lipid Res. 1980 Jan;21(1):10–22. [PubMed] [Google Scholar]
- Possmayer F. A proposed nomenclature for pulmonary surfactant-associated proteins. Am Rev Respir Dis. 1988 Oct;138(4):990–998. doi: 10.1164/ajrccm/138.4.990. [DOI] [PubMed] [Google Scholar]
- Post A., Nahmen A. V., Schmitt M., Ruths J., Riegler H., Sieber M., Galla H. J. Pulmonary surfactant protein C containing lipid films at the air-water interface as a model for the surface of lung alveoli. Mol Membr Biol. 1995 Jan-Mar;12(1):93–99. doi: 10.3109/09687689509038502. [DOI] [PubMed] [Google Scholar]
- Pérez-Gil J., Nag K., Taneva S., Keough K. M. Pulmonary surfactant protein SP-C causes packing rearrangements of dipalmitoylphosphatidylcholine in spread monolayers. Biophys J. 1992 Jul;63(1):197–204. doi: 10.1016/S0006-3495(92)81582-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qanbar R., Possmayer F. On the surface activity of surfactant-associated protein C (SP-C): effects of palmitoylation and pH. Biochim Biophys Acta. 1995 Apr 6;1255(3):251–259. doi: 10.1016/0005-2760(94)00224-m. [DOI] [PubMed] [Google Scholar]
- Schürch S., Green F. H., Bachofen H. Formation and structure of surface films: captive bubble surfactometry. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):180–202. doi: 10.1016/s0925-4439(98)00067-2. [DOI] [PubMed] [Google Scholar]
- Schürch S., Schürch D., Curstedt T., Robertson B. Surface activity of lipid extract surfactant in relation to film area compression and collapse. J Appl Physiol (1985) 1994 Aug;77(2):974–986. doi: 10.1152/jappl.1994.77.2.974. [DOI] [PubMed] [Google Scholar]
- Shelley S. A., Balis J. U., Paciga J. E., Espinoza C. G., Richman A. V. Biochemical composition of adult human lung surfactant. Lung. 1982;160(4):195–206. doi: 10.1007/BF02719293. [DOI] [PubMed] [Google Scholar]
- Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
- Weaver T. E. Pulmonary surfactant-associated proteins. Gen Pharmacol. 1988;19(3):361–368. doi: 10.1016/0306-3623(88)90029-8. [DOI] [PubMed] [Google Scholar]
- Woodle M. C., Papahadjopoulos D. Liposome preparation and size characterization. Methods Enzymol. 1989;171:193–217. doi: 10.1016/s0076-6879(89)71012-0. [DOI] [PubMed] [Google Scholar]
- von Nahmen A., Post A., Galla H. J., Sieber M. The phase behavior of lipid monolayers containing pulmonary surfactant protein C studied by fluorescence light microscopy. Eur Biophys J. 1997;26(5):359–369. doi: 10.1007/s002490050090. [DOI] [PubMed] [Google Scholar]
- von Nahmen A., Schenk M., Sieber M., Amrein M. The structure of a model pulmonary surfactant as revealed by scanning force microscopy. Biophys J. 1997 Jan;72(1):463–469. doi: 10.1016/S0006-3495(97)78687-9. [DOI] [PMC free article] [PubMed] [Google Scholar]