Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jul;83(1):566–581. doi: 10.1016/S0006-3495(02)75192-8

Metal ion-induced lateral aggregation of filamentous viruses fd and M13.

Jay X Tang 1, Paul A Janmey 1, Alexander Lyubartsev 1, Lars Nordenskiöld 1
PMCID: PMC1302170  PMID: 12080143

Abstract

We report a detailed comparison between calculations of inter-filament interactions based on Monte-Carlo simulations and experimental features of lateral aggregation of bacteriophages fd and M13 induced by a number of divalent metal ions. The general findings are consistent with the polyelectrolyte nature of the virus filaments and confirm that the solution electrostatics account for most of the experimental features observed. One particularly interesting discovery is resolubilization for bundles of either fd or M13 viruses when the concentration of the bundle-inducing metal ion Mg(2+) or Ca(2+) is increased to large (>100 mM) values. In the range of Mg(2+) or Ca(2+) concentrations where large bundles of the virus filaments are formed, the optimal attractive interaction energy between the virus filaments is estimated to be on the order of 0.01 kT per net charge on the virus surface when a recent analytical prediction to the experimentally defined conditions of resolubilization is applied. We also observed qualitatively distinct behavior between the alkali-earth metal ions and the divalent transition metal ions in their action on the charged viruses. The understanding of metal ions-induced reversible aggregation based on solution electrostatics may lead to potential applications in molecular biology and medicine.

Full Text

The Full Text of this article is available as a PDF (687.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. F., Record M. T., Jr Ion distributions around DNA and other cylindrical polyions: theoretical descriptions and physical implications. Annu Rev Biophys Biophys Chem. 1990;19:423–465. doi: 10.1146/annurev.bb.19.060190.002231. [DOI] [PubMed] [Google Scholar]
  2. Arscott P. G., Li A. Z., Bloomfield V. A. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers. 1990;30(5-6):619–630. doi: 10.1002/bip.360300514. [DOI] [PubMed] [Google Scholar]
  3. Baeza I., Gariglio P., Rangel L. M., Chavez P., Cervantes L., Arguello C., Wong C., Montañez C. Electron microscopy and biochemical properties of polyamine-compacted DNA. Biochemistry. 1987 Oct 6;26(20):6387–6392. doi: 10.1021/bi00394a012. [DOI] [PubMed] [Google Scholar]
  4. Bloomfield V. A. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers. 1991 Nov;31(13):1471–1481. doi: 10.1002/bip.360311305. [DOI] [PubMed] [Google Scholar]
  5. Day L. A., Marzec C. J., Reisberg S. A., Casadevall A. DNA packing in filamentous bacteriophages. Annu Rev Biophys Biophys Chem. 1988;17:509–539. doi: 10.1146/annurev.bb.17.060188.002453. [DOI] [PubMed] [Google Scholar]
  6. Duguid J., Bloomfield V. A., Benevides J., Thomas G. J., Jr Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophys J. 1993 Nov;65(5):1916–1928. doi: 10.1016/S0006-3495(93)81263-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Israelachvili J., Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996 Jan 18;379(6562):219–225. doi: 10.1038/379219a0. [DOI] [PubMed] [Google Scholar]
  8. Janmey P. A., Hvidt S., Käs J., Lerche D., Maggs A., Sackmann E., Schliwa M., Stossel T. P. The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem. 1994 Dec 23;269(51):32503–32513. [PubMed] [Google Scholar]
  9. Kirkwood J. G., Shumaker J. B. Forces between Protein Molecules in Solution Arising from Fluctuations in Proton Charge and Configuration. Proc Natl Acad Sci U S A. 1952 Oct;38(10):863–871. doi: 10.1073/pnas.38.10.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lamm G., Wong L., Pack G. R. Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA. Biopolymers. 1994 Feb;34(2):227–237. doi: 10.1002/bip.360340209. [DOI] [PubMed] [Google Scholar]
  11. Li A. Z., Huang H., Re X., Qi L. J., Marx K. A. A gel electrophoresis study of the competitive effects of monovalent counterion on the extent of divalent counterions binding to DNA. Biophys J. 1998 Feb;74(2 Pt 1):964–973. doi: 10.1016/S0006-3495(98)74019-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  13. Marquet R., Houssier C. Thermodynamics of cation-induced DNA condensation. J Biomol Struct Dyn. 1991 Aug;9(1):159–167. doi: 10.1080/07391102.1991.10507900. [DOI] [PubMed] [Google Scholar]
  14. Newman J., Swinney H. L., Day L. A. Hydrodynamic properties and structure of fd virus. J Mol Biol. 1977 Nov 5;116(3):593–603. doi: 10.1016/0022-2836(77)90086-9. [DOI] [PubMed] [Google Scholar]
  15. Nguyen TT, Grosberg AY, Shklovskii BI. Macroions in salty water with multivalent ions: giant inversion of charge. Phys Rev Lett. 2000 Aug 14;85(7):1568–1571. doi: 10.1103/PhysRevLett.85.1568. [DOI] [PubMed] [Google Scholar]
  16. Park S. Y., Harries D., Gelbart W. M. Topological defects and the optimum size of DNA condensates. Biophys J. 1998 Aug;75(2):714–720. doi: 10.1016/S0006-3495(98)77561-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pelta J., Livolant F., Sikorav J. L. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem. 1996 Mar 8;271(10):5656–5662. doi: 10.1074/jbc.271.10.5656. [DOI] [PubMed] [Google Scholar]
  18. Rae J. L., Dewey J., Rae J. S., Nesler M., Cooper K. Single potassium channels in corneal epithelium. Invest Ophthalmol Vis Sci. 1990 Sep;31(9):1799–1809. [PubMed] [Google Scholar]
  19. Rau D. C., Lee B., Parsegian V. A. Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: hydration forces between parallel DNA double helices. Proc Natl Acad Sci U S A. 1984 May;81(9):2621–2625. doi: 10.1073/pnas.81.9.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rouzina I., Bloomfield V. A. Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson-Boltzmann equation. Biophys Chem. 1997 Feb 28;64(1-3):139–155. doi: 10.1016/s0301-4622(96)02231-4. [DOI] [PubMed] [Google Scholar]
  21. Sharp K. A., Friedman R. A., Misra V., Hecht J., Honig B. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models. Biopolymers. 1995 Aug;36(2):245–262. doi: 10.1002/bip.360360211. [DOI] [PubMed] [Google Scholar]
  22. Sheils C. A., Käs J., Travassos W., Allen P. G., Janmey P. A., Wohl M. E., Stossel T. P. Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. Am J Pathol. 1996 Mar;148(3):919–927. [PMC free article] [PubMed] [Google Scholar]
  23. Shklovskii B. I. Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt B):5802–5811. doi: 10.1103/physreve.60.5802. [DOI] [PubMed] [Google Scholar]
  24. Song L., Kim U. S., Wilcoxon J., Schurr J. M. Dynamic light scattering from weakly bending rods: estimation of the dynamic bending rigidity of the M13 virus. Biopolymers. 1991 Apr;31(5):547–567. doi: 10.1002/bip.360310510. [DOI] [PubMed] [Google Scholar]
  25. Stigter D. Evaluation of the counterion condensation theory of polyelectrolytes. Biophys J. 1995 Aug;69(2):380–388. doi: 10.1016/S0006-3495(95)79910-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tang J. X., Ito T., Tao T., Traub P., Janmey P. A. Opposite effects of electrostatics and steric exclusion on bundle formation by F-actin and other filamentous polyelectrolytes. Biochemistry. 1997 Oct 14;36(41):12600–12607. doi: 10.1021/bi9711386. [DOI] [PubMed] [Google Scholar]
  27. Tang J. X., Janmey P. A. The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. J Biol Chem. 1996 Apr 12;271(15):8556–8563. doi: 10.1074/jbc.271.15.8556. [DOI] [PubMed] [Google Scholar]
  28. Xian W., Tang J. X., Janmey P. A., Braunlin W. H. The polyelectrolyte behavior of actin filaments: a 25Mg NMR study. Biochemistry. 1999 Jun 1;38(22):7219–7226. doi: 10.1021/bi982301f. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES