Abstract
Fluorescence fluctuation methods such as fluorescence correlation spectroscopy and fluorescence intensity distribution analysis (FIDA) have proven to be versatile tools for studying molecular interactions with single molecule sensitivity. Another well-known fluorescence technique is the measurement of the fluorescence lifetime. Here, we introduce a method that combines the benefits of both FIDA and fluorescence lifetime analysis. It is based on fitting the two-dimensional histogram of the number of photons detected in counting time intervals of given width and the sum of excitation to detection delay times of these photons. Referred to as fluorescence intensity and lifetime distribution analysis (FILDA), the technique distinguishes fluorescence species on the basis of both their specific molecular brightness and the lifetime of the excited state and is also able to determine absolute fluorophore concentrations. The combined information yielded by FILDA results in significantly increased accuracy compared to that of FIDA or fluorescence lifetime analysis alone. In this paper, the theory of FILDA is elaborated and applied to both simulated and experimental data. The outstanding power of this technique in resolving different species is shown by quantifying the binding of calmodulin to a peptide ligand, thus indicating the potential for application of FILDA to similar problems in the life sciences.
Full Text
The Full Text of this article is available as a PDF (222.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
- Barth A., Martin S. R., Bayley P. M. Specificity and symmetry in the interaction of calmodulin domains with the skeletal muscle myosin light chain kinase target sequence. J Biol Chem. 1998 Jan 23;273(4):2174–2183. doi: 10.1074/jbc.273.4.2174. [DOI] [PubMed] [Google Scholar]
- Chattopadhyaya R., Meador W. E., Means A. R., Quiocho F. A. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992 Dec 20;228(4):1177–1192. doi: 10.1016/0022-2836(92)90324-d. [DOI] [PubMed] [Google Scholar]
- Chen Y., Müller J. D., So P. T., Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999 Jul;77(1):553–567. doi: 10.1016/S0006-3495(99)76912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggeling C., Berger S., Brand L., Fries J. R., Schaffer J., Volkmer A., Seidel C. A. Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol. 2001 Apr 13;86(3):163–180. doi: 10.1016/s0168-1656(00)00412-0. [DOI] [PubMed] [Google Scholar]
- Grinvald A., Steinberg I. Z. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem. 1974 Jun;59(2):583–598. doi: 10.1016/0003-2697(74)90312-1. [DOI] [PubMed] [Google Scholar]
- Ikura M., Barbato G., Klee C. B., Bax A. Solution structure of calmodulin and its complex with a myosin light chain kinase fragment. Cell Calcium. 1992 Jun-Jul;13(6-7):391–400. doi: 10.1016/0143-4160(92)90052-t. [DOI] [PubMed] [Google Scholar]
- Kask P., Palo K., Fay N., Brand L., Mets U., Ullmann D., Jungmann J., Pschorr J., Gall K. Two-dimensional fluorescence intensity distribution analysis: theory and applications. Biophys J. 2000 Apr;78(4):1703–1713. doi: 10.1016/S0006-3495(00)76722-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kask P., Palo K., Ullmann D., Gall K. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13756–13761. doi: 10.1073/pnas.96.24.13756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kask P., Piksarv P., Pooga M., Mets U., Lippmaa E. Separation of the rotational contribution in fluorescence correlation experiments. Biophys J. 1989 Feb;55(2):213–220. doi: 10.1016/S0006-3495(89)82796-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klee C. B. Ca2+-dependent phospholipid- (and membrane-) binding proteins. Biochemistry. 1988 Sep 6;27(18):6645–6653. doi: 10.1021/bi00418a001. [DOI] [PubMed] [Google Scholar]
- Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maus M., Cotlet M., Hofkens J., Gensch T., De Schryver F. C., Schaffer J., Seidel C. A. An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal Chem. 2001 May 1;73(9):2078–2086. doi: 10.1021/ac000877g. [DOI] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
- Palo K., Mets U., Jäger S., Kask P., Gall K. Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness. Biophys J. 2000 Dec;79(6):2858–2866. doi: 10.1016/S0006-3495(00)76523-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prummer M, Hubner CG, Sick B, Hecht B, Renn A, Wild UP. Single-molecule identification by spectrally and time-resolved fluorescence detection. Anal Chem. 2000 Feb 1;72(3):443–447. doi: 10.1021/ac991116k. [DOI] [PubMed] [Google Scholar]
- Schwille P., Meyer-Almes F. J., Rigler R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J. 1997 Apr;72(4):1878–1886. doi: 10.1016/S0006-3495(97)78833-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilmann M., Gautel M., Mayans O. Activation of calcium/calmodulin regulated kinases. Cell Mol Biol (Noisy-le-grand) 2000 Jul;46(5):883–894. [PubMed] [Google Scholar]
- Xie X. S., Trautman J. K. Optical studies of single molecules at room temperature. Annu Rev Phys Chem. 1998;49:441–480. doi: 10.1146/annurev.physchem.49.1.441. [DOI] [PubMed] [Google Scholar]
- Zhang JH, Chung TD, Oldenburg KR. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 1999;4(2):67–73. doi: 10.1177/108705719900400206. [DOI] [PubMed] [Google Scholar]
