Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):663–680. doi: 10.1016/S0006-3495(02)75199-0

Relating molecular flexibility to function: a case study of tubulin.

Ozlem Keskin 1, Stewart R Durell 1, Ivet Bahar 1, Robert L Jernigan 1, David G Covell 1
PMCID: PMC1302177  PMID: 12124255

Abstract

Microtubules (MT), along with a variety of associated motor proteins, are involved in a range of cellular functions including vesicle movement, chromosome segregation, and cell motility. MTs are assemblies of heterodimeric proteins, alpha beta-tubulins, the structure of which has been determined by electron crystallography of zinc-induced, pacilitaxel-stabilized tubulin sheets. These data provide a basis for examining relationships between structural features and protein function. Here, we study the fluctuation dynamics of the tubulin dimer with the aim of elucidating its functional motions relevant to substrate binding, polymerization/depolymerization and MT assembly. A coarse-grained model, harmonically constrained according to the crystal structure, is used to explore the global dynamics of the dimer. Our results identify six regions of collective motion, comprised of structurally close but discontinuous sequence fragments, observed only in the dimeric form, dimerization being a prerequisite for domain identification. Boundaries between regions of collective motions appear to act as linkages, found primarily within secondary-structure elements that lack sequence conservation, but are located at minima in the fluctuation curve, at positions of hydrophobic residues. Residue fluctuations within these domains identify the most mobile regions as loops involved in recognition of the adjacent regions. The least mobile regions are associated with nucleotide binding sites where lethal mutations occur. The functional coupling of motions between and within regions identifies three global motions: torsional and wobbling movements, en bloc, between the alpha- and beta-tubulin monomers, and stretching longitudinally. Further analysis finds the antitumor drug pacilitaxel (TaxotereR) to reduce flexibility in the M loop of the beta-tubulin monomer; an effect that may contribute to tightening lateral interactions between protofilaments assembled into MTs. Our analysis provides insights into relationships between intramolecular tubulin movements of MT organization and function.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
  2. Amos L. A., Löwe J. How Taxol stabilises microtubule structure. Chem Biol. 1999 Mar;6(3):R65–R69. doi: 10.1016/s1074-5521(99)89002-4. [DOI] [PubMed] [Google Scholar]
  3. Andreu J. M., Bordas J., Diaz J. F., García de Ancos J., Gil R., Medrano F. J., Nogales E., Pantos E., Towns-Andrews E. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules. J Mol Biol. 1992 Jul 5;226(1):169–184. doi: 10.1016/0022-2836(92)90132-4. [DOI] [PubMed] [Google Scholar]
  4. Arrington C. B., Robertson A. D. Microsecond to minute dynamics revealed by EX1-type hydrogen exchange at nearly every backbone hydrogen bond in a native protein. J Mol Biol. 2000 Mar 10;296(5):1307–1317. doi: 10.1006/jmbi.2000.3536. [DOI] [PubMed] [Google Scholar]
  5. Atilgan A. R., Durell S. R., Jernigan R. L., Demirel M. C., Keskin O., Bahar I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J. 2001 Jan;80(1):505–515. doi: 10.1016/S0006-3495(01)76033-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bahar I., Atilgan A. R., Erman B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 1997;2(3):173–181. doi: 10.1016/S1359-0278(97)00024-2. [DOI] [PubMed] [Google Scholar]
  7. Bahar I., Erman B., Jernigan R. L., Atilgan A. R., Covell D. G. Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. J Mol Biol. 1999 Jan 22;285(3):1023–1037. doi: 10.1006/jmbi.1998.2371. [DOI] [PubMed] [Google Scholar]
  8. Bahar I., Jernigan R. L. Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J Mol Biol. 1997 Feb 14;266(1):195–214. doi: 10.1006/jmbi.1996.0758. [DOI] [PubMed] [Google Scholar]
  9. Bahar I., Jernigan R. L. Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms. J Mol Biol. 1998 Sep 4;281(5):871–884. doi: 10.1006/jmbi.1998.1978. [DOI] [PubMed] [Google Scholar]
  10. Bai R., Choe K., Ewell J. B., Nguyen N. Y., Hamel E. Direct photoaffinity labeling of cysteine-295 of alpha-tubulin by guanosine 5'-triphosphate bound in the nonexchangeable site. J Biol Chem. 1998 Apr 17;273(16):9894–9897. doi: 10.1074/jbc.273.16.9894. [DOI] [PubMed] [Google Scholar]
  11. Bai R., Ewell J. B., Nguyen N. Y., Hamel E. Direct photoaffinity labeling of cysteine 211 or a nearby amino acid residue of beta-tubulin by guanosine 5'-diphosphate bound in the exchangeable site. J Biol Chem. 1999 Apr 30;274(18):12710–12714. doi: 10.1074/jbc.274.18.12710. [DOI] [PubMed] [Google Scholar]
  12. Demirel M. C., Atilgan A. R., Jernigan R. L., Erman B., Bahar I. Identification of kinetically hot residues in proteins. Protein Sci. 1998 Dec;7(12):2522–2532. doi: 10.1002/pro.5560071205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Desai A., Mitchison T. J. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117. doi: 10.1146/annurev.cellbio.13.1.83. [DOI] [PubMed] [Google Scholar]
  14. Doruker P., Atilgan A. R., Bahar I. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to alpha-amylase inhibitor. Proteins. 2000 Aug 15;40(3):512–524. [PubMed] [Google Scholar]
  15. Downing K. H., Nogales E. New insights into microtubule structure and function from the atomic model of tubulin. Eur Biophys J. 1998;27(5):431–436. doi: 10.1007/s002490050153. [DOI] [PubMed] [Google Scholar]
  16. Downing K. H., Nogales E. Tubulin and microtubule structure. Curr Opin Cell Biol. 1998 Feb;10(1):16–22. doi: 10.1016/s0955-0674(98)80082-3. [DOI] [PubMed] [Google Scholar]
  17. Downing K. H., Nogales E. Tubulin structure: insights into microtubule properties and functions. Curr Opin Struct Biol. 1998 Dec;8(6):785–791. doi: 10.1016/s0959-440x(98)80099-7. [DOI] [PubMed] [Google Scholar]
  18. Dye R. B., Flicker P. F., Lien D. Y., Williams R. C., Jr End-stabilized microtubules observed in vitro: stability, subunit, interchange, and breakage. Cell Motil Cytoskeleton. 1992;21(3):171–186. doi: 10.1002/cm.970210302. [DOI] [PubMed] [Google Scholar]
  19. Erickson H. P. Atomic structures of tubulin and FtsZ. Trends Cell Biol. 1998 Apr;8(4):133–137. doi: 10.1016/s0962-8924(98)01237-9. [DOI] [PubMed] [Google Scholar]
  20. Giannakakou P., Sackett D. L., Kang Y. K., Zhan Z., Buters J. T., Fojo T., Poruchynsky M. S. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem. 1997 Jul 4;272(27):17118–17125. doi: 10.1074/jbc.272.27.17118. [DOI] [PubMed] [Google Scholar]
  21. Go N. A theorem on amplitudes of thermal atomic fluctuations in large molecules assuming specific conformations calculated by normal mode analysis. Biophys Chem. 1990 Jan;35(1):105–112. doi: 10.1016/0301-4622(90)80065-f. [DOI] [PubMed] [Google Scholar]
  22. Guéritte-Voegelein F., Guénard D., Lavelle F., Le Goff M. T., Mangatal L., Potier P. Relationships between the structure of taxol analogues and their antimitotic activity. J Med Chem. 1991 Mar;34(3):992–998. doi: 10.1021/jm00107a017. [DOI] [PubMed] [Google Scholar]
  23. Hayward S., Kitao A., Berendsen H. J. Model-free methods of analyzing domain motions in proteins from simulation: a comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins. 1997 Mar;27(3):425–437. doi: 10.1002/(sici)1097-0134(199703)27:3<425::aid-prot10>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  24. Hinsen K. Analysis of domain motions by approximate normal mode calculations. Proteins. 1998 Nov 15;33(3):417–429. doi: 10.1002/(sici)1097-0134(19981115)33:3<417::aid-prot10>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  25. Hinsen K., Thomas A., Field M. J. Analysis of domain motions in large proteins. Proteins. 1999 Feb 15;34(3):369–382. [PubMed] [Google Scholar]
  26. Howard W. D., Timasheff S. N. Linkages between the effects of taxol, colchicine, and GTP on tubulin polymerization. J Biol Chem. 1988 Jan 25;263(3):1342–1346. [PubMed] [Google Scholar]
  27. Keskin O., Bahar I., Flatow D., Covell D. G., Jernigan R. L. Molecular mechanisms of chaperonin GroEL-GroES function. Biochemistry. 2002 Jan 15;41(2):491–501. doi: 10.1021/bi011393x. [DOI] [PubMed] [Google Scholar]
  28. Keskin O., Jernigan R. L., Bahar I. Proteins with similar architecture exhibit similar large-scale dynamic behavior. Biophys J. 2000 Apr;78(4):2093–2106. doi: 10.1016/S0006-3495(00)76756-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kitao A., Go N. Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol. 1999 Apr;9(2):164–169. doi: 10.1016/S0959-440X(99)80023-2. [DOI] [PubMed] [Google Scholar]
  30. Linse K., Mandelkow E. M. The GTP-binding peptide of beta-tubulin. Localization by direct photoaffinity labeling and comparison with nucleotide-binding proteins. J Biol Chem. 1988 Oct 15;263(29):15205–15210. [PubMed] [Google Scholar]
  31. Ludueña R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol. 1998;178:207–275. doi: 10.1016/s0074-7696(08)62138-5. [DOI] [PubMed] [Google Scholar]
  32. Nogales E., Downing K. H., Amos L. A., Löwe J. Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol. 1998 Jun;5(6):451–458. doi: 10.1038/nsb0698-451. [DOI] [PubMed] [Google Scholar]
  33. Nogales E., Whittaker M., Milligan R. A., Downing K. H. High-resolution model of the microtubule. Cell. 1999 Jan 8;96(1):79–88. doi: 10.1016/s0092-8674(00)80961-7. [DOI] [PubMed] [Google Scholar]
  34. Nogales E., Wolf S. G., Downing K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998 Jan 8;391(6663):199–203. doi: 10.1038/34465. [DOI] [PubMed] [Google Scholar]
  35. Rao S., Horwitz S. B., Ringel I. Direct photoaffinity labeling of tubulin with taxol. J Natl Cancer Inst. 1992 May 20;84(10):785–788. doi: 10.1093/jnci/84.10.785. [DOI] [PubMed] [Google Scholar]
  36. Reijo R. A., Cooper E. M., Beagle G. J., Huffaker T. C. Systematic mutational analysis of the yeast beta-tubulin gene. Mol Biol Cell. 1994 Jan;5(1):29–43. doi: 10.1091/mbc.5.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Richards K. L., Anders K. R., Nogales E., Schwartz K., Downing K. H., Botstein D. Structure-function relationships in yeast tubulins. Mol Biol Cell. 2000 May;11(5):1887–1903. doi: 10.1091/mbc.11.5.1887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thomas A., Field M. J., Mouawad L., Perahia D. Analysis of the low frequency normal modes of the T-state of aspartate transcarbamylase. J Mol Biol. 1996 Apr 19;257(5):1070–1087. doi: 10.1006/jmbi.1996.0224. [DOI] [PubMed] [Google Scholar]
  39. Tirion MM. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys Rev Lett. 1996 Aug 26;77(9):1905–1908. doi: 10.1103/PhysRevLett.77.1905. [DOI] [PubMed] [Google Scholar]
  40. Uppuluri S., Knipling L., Sackett D. L., Wolff J. Localization of the colchicine-binding site of tubulin. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11598–11602. doi: 10.1073/pnas.90.24.11598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999 Mar 12;283(5408):1676–1683. doi: 10.1126/science.283.5408.1676. [DOI] [PubMed] [Google Scholar]
  42. Wilson L., Jordan M. A. Microtubule dynamics: taking aim at a moving target. Chem Biol. 1995 Sep;2(9):569–573. doi: 10.1016/1074-5521(95)90119-1. [DOI] [PubMed] [Google Scholar]
  43. ben-Avraham D. Diffusion-limited three-body reactions in one dimension. Phys Rev Lett. 1993 Nov 29;71(22):3733–3735. doi: 10.1103/PhysRevLett.71.3733. [DOI] [PubMed] [Google Scholar]
  44. de Groot B. L., Hayward S., van Aalten D. M., Amadei A., Berendsen H. J. Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data. Proteins. 1998 May 1;31(2):116–127. doi: 10.1002/(sici)1097-0134(19980501)31:2<116::aid-prot2>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES