Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):723–732. doi: 10.1016/S0006-3495(02)75203-X

Dynamics of proteins in crystals: comparison of experiment with simple models.

Sibsankar Kundu 1, Julia S Melton 1, Dan C Sorensen 1, George N Phillips Jr 1
PMCID: PMC1302181  PMID: 12124259

Abstract

The dynamic behavior of proteins in crystals is examined by comparing theory and experiments. The Gaussian network model (GNM) and a simplified version of the crystallographic translation libration screw (TLS) model are used to calculate mean square fluctuations of C(alpha) atoms for a set of 113 proteins whose structures have been determined by x-ray crystallography. Correlation coefficients between the theoretical estimations and experiment are calculated and compared. The GNM method gives better correlation with experimental data than the rigid-body libration model and has the added benefit of being able to calculate correlations between the fluctuations of pairs of atoms. By incorporating the effect of neighboring molecules in the crystal the correlation is further improved.

Full Text

The Full Text of this article is available as a PDF (198.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atilgan A. R., Durell S. R., Jernigan R. L., Demirel M. C., Keskin O., Bahar I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J. 2001 Jan;80(1):505–515. doi: 10.1016/S0006-3495(01)76033-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bahar I., Atilgan A. R., Erman B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 1997;2(3):173–181. doi: 10.1016/S1359-0278(97)00024-2. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  5. Doruker P., Atilgan A. R., Bahar I. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to alpha-amylase inhibitor. Proteins. 2000 Aug 15;40(3):512–524. [PubMed] [Google Scholar]
  6. Haliloglu T., Bahar I. Structure-based analysis of protein dynamics: comparison of theoretical results for hen lysozyme with X-ray diffraction and NMR relaxation data. Proteins. 1999 Dec 1;37(4):654–667. doi: 10.1002/(sici)1097-0134(19991201)37:4<654::aid-prot15>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  7. Harata K., Abe Y., Muraki M. Crystallographic evaluation of internal motion of human alpha-lactalbumin refined by full-matrix least-squares method. J Mol Biol. 1999 Mar 26;287(2):347–358. doi: 10.1006/jmbi.1999.2598. [DOI] [PubMed] [Google Scholar]
  8. Higo J., Umeyama H. Protein dynamics determined by backbone conformation and atom packing. Protein Eng. 1997 Apr;10(4):373–380. doi: 10.1093/protein/10.4.373. [DOI] [PubMed] [Google Scholar]
  9. Kuriyan J., Petsko G. A., Levy R. M., Karplus M. Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. J Mol Biol. 1986 Jul 20;190(2):227–254. doi: 10.1016/0022-2836(86)90295-0. [DOI] [PubMed] [Google Scholar]
  10. Levitt M., Sander C., Stern P. S. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol. 1985 Feb 5;181(3):423–447. doi: 10.1016/0022-2836(85)90230-x. [DOI] [PubMed] [Google Scholar]
  11. Singh A. P., Brutlag D. L. Hierarchical protein structure superposition using both secondary structure and atomic representations. Proc Int Conf Intell Syst Mol Biol. 1997;5:284–293. [PubMed] [Google Scholar]
  12. Sternberg M. J., Grace D. E., Phillips D. C. Dynamic information from protein crystallography. An analysis of temperature factors from refinement of the hen egg-white lysozyme structure. J Mol Biol. 1979 May 25;130(3):231–252. doi: 10.1016/0022-2836(79)90539-4. [DOI] [PubMed] [Google Scholar]
  13. Tirion MM. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys Rev Lett. 1996 Aug 26;77(9):1905–1908. doi: 10.1103/PhysRevLett.77.1905. [DOI] [PubMed] [Google Scholar]
  14. Word J. M., Lovell S. C., LaBean T. H., Taylor H. C., Zalis M. E., Presley B. K., Richardson J. S., Richardson D. C. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol. 1999 Jan 29;285(4):1711–1733. doi: 10.1006/jmbi.1998.2400. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES