Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):733–739. doi: 10.1016/S0006-3495(02)75204-1

A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions.

Yukio Magariyama 1, Seishi Kudo 1
PMCID: PMC1302182  PMID: 12124260

Abstract

Bacterial swimming speed is sometimes known to increase with viscosity. This phenomenon is peculiar to bacterial motion. Berg and Turner (Nature. 278:349-351, 1979) indicated that the phenomenon was caused by a loose, quasi-rigid network formed by polymer molecules that were added to increase viscosity. We mathematically developed their concept by introducing two apparent viscosities and obtained results similar to the experimental data reported before. Addition of polymer improved the propulsion efficiency, which surpasses the decline in flagellar rotation rate, and the swimming speed increased with viscosity.

Full Text

The Full Text of this article is available as a PDF (201.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atsumi T., Maekawa Y., Yamada T., Kawagishi I., Imae Y., Homma M. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. J Bacteriol. 1996 Aug;178(16):5024–5026. doi: 10.1128/jb.178.16.5024-5026.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg H. C. Constraints on models for the flagellar rotary motor. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):491–501. doi: 10.1098/rstb.2000.0590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg H. C., Turner L. Movement of microorganisms in viscous environments. Nature. 1979 Mar 22;278(5702):349–351. doi: 10.1038/278349a0. [DOI] [PubMed] [Google Scholar]
  4. Chen X., Berg H. C. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J. 2000 Feb;78(2):1036–1041. doi: 10.1016/S0006-3495(00)76662-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chwang A. T., Wu T. Y. A note on the helical movement of micro-organisms. Proc R Soc Lond B Biol Sci. 1971 Aug 3;178(1052):327–346. doi: 10.1098/rspb.1971.0068. [DOI] [PubMed] [Google Scholar]
  6. Greenberg E. P., Canale-Parola E. Motility of flagellated bacteria in viscous environments. J Bacteriol. 1977 Oct;132(1):356–358. doi: 10.1128/jb.132.1.356-358.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenberg E. P., Canale-Parola E. Relationship between cell coiling and motility of spirochetes in viscous environments. J Bacteriol. 1977 Sep;131(3):960–969. doi: 10.1128/jb.131.3.960-969.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HOLWILL M. E., BURGE R. E. A hydrodynamic study of the motility of flagellated bacteria. Arch Biochem Biophys. 1963 May;101:249–260. doi: 10.1016/s0003-9861(63)80010-7. [DOI] [PubMed] [Google Scholar]
  9. Kaiser G. E., Doetsch R. N. Letter: Enhanced translational motion of Leptospira in viscous environments. Nature. 1975 Jun 19;255(5510):656–657. doi: 10.1038/255656a0. [DOI] [PubMed] [Google Scholar]
  10. Kawagishi I., Maekawa Y., Atsumi T., Homma M., Imae Y. Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources. J Bacteriol. 1995 Sep;177(17):5158–5160. doi: 10.1128/jb.177.17.5158-5160.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kluijtmans SG, Koenderink GH, Philipse AP. Self-diffusion and sedimentation of tracer spheres in (semi)dilute dispersions of rigid colloidal rods. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):626–636. doi: 10.1103/physreve.61.626. [DOI] [PubMed] [Google Scholar]
  12. Kudo S., Magariyama Y., Aizawa S. Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature. 1990 Aug 16;346(6285):677–680. doi: 10.1038/346677a0. [DOI] [PubMed] [Google Scholar]
  13. Lavalette D., Tétreau C., Tourbez M., Blouquit Y. Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment. Biophys J. 1999 May;76(5):2744–2751. doi: 10.1016/S0006-3495(99)77427-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu J. Z., Dapice M., Khan S. Ion selectivity of the Vibrio alginolyticus flagellar motor. J Bacteriol. 1990 Sep;172(9):5236–5244. doi: 10.1128/jb.172.9.5236-5244.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Magariyama Y., Sugiyama S., Kudo S. Bacterial swimming speed and rotation rate of bundled flagella. FEMS Microbiol Lett. 2001 May 15;199(1):125–129. doi: 10.1111/j.1574-6968.2001.tb10662.x. [DOI] [PubMed] [Google Scholar]
  16. Magariyama Y., Sugiyama S., Muramoto K., Kawagishi I., Imae Y., Kudo S. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys J. 1995 Nov;69(5):2154–2162. doi: 10.1016/S0006-3495(95)80089-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ramia M., Tullock D. L., Phan-Thien N. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J. 1993 Aug;65(2):755–778. doi: 10.1016/S0006-3495(93)81129-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ryu W. S., Berry R. M., Berg H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature. 2000 Jan 27;403(6768):444–447. doi: 10.1038/35000233. [DOI] [PubMed] [Google Scholar]
  19. Schneider W. R., Doetsch R. N. Effect of viscosity on bacterial motility. J Bacteriol. 1974 Feb;117(2):696–701. doi: 10.1128/jb.117.2.696-701.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Turner D. N., Hallett F. R. A study of the diffusion of compact particles in polymer solutions using quasi-elastic light scattering. Biochim Biophys Acta. 1976 Nov 18;451(1):305–312. doi: 10.1016/0304-4165(76)90280-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES