Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):753–762. doi: 10.1016/S0006-3495(02)75206-5

Steered molecular dynamics simulations on the "tail helix latch" hypothesis in the gelsolin activation process.

Feng Cheng 1, Jianhua Shen 1, Xiaomin Luo 1, Hualiang Jiang 1, Kaixian Chen 1
PMCID: PMC1302184  PMID: 12124262

Abstract

The molecular basis of the "tail helix latch" hypothesis in the gelsolin activation process has been studied by using the steered molecular dynamics simulations. In the present nanosecond scale simulations, the tail helix of gelsolin was pulled away from the S2 binding surface, and the required forces were calculated, from which the properties of binding between the tail helix and S2 domain and their dynamic unbinding processes were obtained. The force profile provides a detailed rupture mechanism that includes six major unbinding steps. In particular, the hydrogen bonds formed between Arg-207 and Asp-744 and between Arg-221 and Leu-753 are of the most important interaction pairs. The two hydrogen bond "clamps" stabilize the complex. The subsequent simulation on Arg-207-Ala (R207A) mutation of gelsolin indicated that this mutation facilitates the unbinding of the tail helix and that the contribution of the hydrogen bond between Arg-207 and Asp-744 to the binding is more than 50%, which offers a new clue for further mutagenesis study on the activation mechanism of gelsolin. Surrounding water molecules enhance the stability of the tail helix and facilitate the rupture process. Additionally, temperature also has a significant effect on the conformation of the arginine and arginine-related interactions, which revealed the molecular basis of the temperature dependence in gelsolin activation.

Full Text

The Full Text of this article is available as a PDF (784.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Bryan J. Gelsolin has three actin-binding sites. J Cell Biol. 1988 May;106(5):1553–1562. doi: 10.1083/jcb.106.5.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burtnick L. D., Koepf E. K., Grimes J., Jones E. Y., Stuart D. I., McLaughlin P. J., Robinson R. C. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell. 1997 Aug 22;90(4):661–670. doi: 10.1016/s0092-8674(00)80527-9. [DOI] [PubMed] [Google Scholar]
  4. Chaponnier C., Janmey P. A., Yin H. L. The actin filament-severing domain of plasma gelsolin. J Cell Biol. 1986 Oct;103(4):1473–1481. doi: 10.1083/jcb.103.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grubmüller H., Heymann B., Tavan P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science. 1996 Feb 16;271(5251):997–999. doi: 10.1126/science.271.5251.997. [DOI] [PubMed] [Google Scholar]
  6. Hopkins Paul N., Hunt Steven C., Jeunemaitre Xavier, Smith Barbara, Solorio Daniel, Fisher Naomi D. L., Hollenberg Norman K., Williams Gordon H. Angiotensinogen genotype affects renal and adrenal responses to angiotensin II in essential hypertension. Circulation. 2002 Apr 23;105(16):1921–1927. doi: 10.1161/01.cir.0000014684.75359.68. [DOI] [PubMed] [Google Scholar]
  7. Isralewitz B., Gao M., Schulten K. Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol. 2001 Apr;11(2):224–230. doi: 10.1016/s0959-440x(00)00194-9. [DOI] [PubMed] [Google Scholar]
  8. Kwiatkowski D. J. Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol. 1999 Feb;11(1):103–108. doi: 10.1016/s0955-0674(99)80012-x. [DOI] [PubMed] [Google Scholar]
  9. Kwiatkowski D. J., Janmey P. A., Yin H. L. Identification of critical functional and regulatory domains in gelsolin. J Cell Biol. 1989 May;108(5):1717–1726. doi: 10.1083/jcb.108.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kwiatkowski D. J., Stossel T. P., Orkin S. H., Mole J. E., Colten H. R., Yin H. L. Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature. 1986 Oct 2;323(6087):455–458. doi: 10.1038/323455a0. [DOI] [PubMed] [Google Scholar]
  11. Lin K. M., Mejillano M., Yin H. L. Ca2+ regulation of gelsolin by its C-terminal tail. J Biol Chem. 2000 Sep 8;275(36):27746–27752. doi: 10.1074/jbc.M003732200. [DOI] [PubMed] [Google Scholar]
  12. Lueck A., Yin H. L., Kwiatkowski D. J., Allen P. G. Calcium regulation of gelsolin and adseverin: a natural test of the helix latch hypothesis. Biochemistry. 2000 May 9;39(18):5274–5279. doi: 10.1021/bi992871v. [DOI] [PubMed] [Google Scholar]
  13. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  14. McGough A. F-actin-binding proteins. Curr Opin Struct Biol. 1998 Apr;8(2):166–176. doi: 10.1016/s0959-440x(98)80034-1. [DOI] [PubMed] [Google Scholar]
  15. Pope B. J., Gooch J. T., Weeds A. G. Probing the effects of calcium on gelsolin. Biochemistry. 1997 Dec 16;36(50):15848–15855. doi: 10.1021/bi972192p. [DOI] [PubMed] [Google Scholar]
  16. Robinson R. C., Mejillano M., Le V. P., Burtnick L. D., Yin H. L., Choe S. Domain movement in gelsolin: a calcium-activated switch. Science. 1999 Dec 3;286(5446):1939–1942. doi: 10.1126/science.286.5446.1939. [DOI] [PubMed] [Google Scholar]
  17. Selden L. A., Kinosian H. J., Newman J., Lincoln B., Hurwitz C., Gershman L. C., Estes J. E. Severing of F-actin by the amino-terminal half of gelsolin suggests internal cooperativity in gelsolin. Biophys J. 1998 Dec;75(6):3092–3100. doi: 10.1016/S0006-3495(98)77750-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sun H. Q., Yamamoto M., Mejillano M., Yin H. L. Gelsolin, a multifunctional actin regulatory protein. J Biol Chem. 1999 Nov 19;274(47):33179–33182. doi: 10.1074/jbc.274.47.33179. [DOI] [PubMed] [Google Scholar]
  19. Wallace A. C., Laskowski R. A., Thornton J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 Feb;8(2):127–134. doi: 10.1093/protein/8.2.127. [DOI] [PubMed] [Google Scholar]
  20. Way M., Weeds A. Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J Mol Biol. 1988 Oct 20;203(4):1127–1133. doi: 10.1016/0022-2836(88)90132-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES