Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):763–775. doi: 10.1016/S0006-3495(02)75207-7

OmpA: a pore or not a pore? Simulation and modeling studies.

Peter J Bond 1, José D Faraldo-Gómez 1, Mark S P Sansom 1
PMCID: PMC1302185  PMID: 12124263

Abstract

The bacterial outer membrane protein OmpA is composed of an N-terminal 171-residue beta-barrel domain (OmpA(171)) that spans the bilayer and a periplasmic, C-terminal domain of unknown structure. OmpA has been suggested to primarily serve a structural role, as no continuous pore through the center of the barrel can be discerned in the crystal structure of OmpA(171). However, several groups have recorded ionic conductances for bilayer-reconstituted OmpA(171). To resolve this apparent paradox we have used molecular dynamics (MD) simulations on OmpA(171) to explore the conformational dynamics of the protein, in particular the possibility of transient formation of a central pore. A total of 19 ns of MD simulations of OmpA(171) have been run, and the results were analyzed in terms of 1) comparative behavior of OmpA(171) in different bilayer and bilayer-mimetic environments, 2) solvation states of OmpA(171), and 3) pore characteristics in different MD simulations. Significant mobility was observed for residues and water molecules within the beta-barrel. A simulation in which putative gate region side chains of the barrel interior were held in a non-native conformation led to an open pore, with a predicted conductance similar to experimental measurements. The OmpA(171) pore has been shown to be somewhat more dynamic than suggested by the crystal structure. A gating mechanism is proposed to explain its documented channel properties, involving a flickering isomerization of Arg138, forming alternate salt bridges with Glu52 (closed state) and Glu128 (open state).

Full Text

The Full Text of this article is available as a PDF (514.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adcock C., Smith G. R., Sansom M. S. Electrostatics and the ion selectivity of ligand-gated channels. Biophys J. 1998 Sep;75(3):1211–1222. doi: 10.1016/S0006-3495(98)74040-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arora A., Abildgaard F., Bushweller J. H., Tamm L. K. Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol. 2001 Apr;8(4):334–338. doi: 10.1038/86214. [DOI] [PubMed] [Google Scholar]
  3. Arora A., Rinehart D., Szabo G., Tamm L. K. Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. J Biol Chem. 2000 Jan 21;275(3):1594–1600. doi: 10.1074/jbc.275.3.1594. [DOI] [PubMed] [Google Scholar]
  4. Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
  5. Basyn F., Charloteaux B., Thomas A., Brasseur R. Prediction of membrane protein orientation in lipid bilayers: a theoretical approach. J Mol Graph Model. 2001;20(3):235–244. doi: 10.1016/s1093-3263(01)00114-0. [DOI] [PubMed] [Google Scholar]
  6. Benz J., Hofmann A. Annexins: from structure to function. Biol Chem. 1997 Mar-Apr;378(3-4):177–183. [PubMed] [Google Scholar]
  7. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bernèche S., Roux B. Energetics of ion conduction through the K+ channel. Nature. 2001 Nov 1;414(6859):73–77. doi: 10.1038/35102067. [DOI] [PubMed] [Google Scholar]
  9. Bernèche S., Roux B. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. Biophys J. 2000 Jun;78(6):2900–2917. doi: 10.1016/S0006-3495(00)76831-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brinkman F. S., Bains M., Hancock R. E. The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model. J Bacteriol. 2000 Sep;182(18):5251–5255. doi: 10.1128/jb.182.18.5251-5255.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Caves L. S., Evanseck J. D., Karplus M. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci. 1998 Mar;7(3):649–666. doi: 10.1002/pro.5560070314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Mot R., Vanderleyden J. The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both gram-positive and gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol. 1994 Apr;12(2):333–334. doi: 10.1111/j.1365-2958.1994.tb01021.x. [DOI] [PubMed] [Google Scholar]
  13. Ducarme P., Rahman M., Brasseur R. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins. 1998 Mar 1;30(4):357–371. [PubMed] [Google Scholar]
  14. Dunbrack R. L., Jr, Karplus M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol. 1993 Mar 20;230(2):543–574. doi: 10.1006/jmbi.1993.1170. [DOI] [PubMed] [Google Scholar]
  15. Elmore D. E., Dougherty D. A. Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J. 2001 Sep;81(3):1345–1359. doi: 10.1016/S0006-3495(01)75791-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Faraldo-Gómez José D., Smith Graham R., Sansom Mark S. P. Setting up and optimization of membrane protein simulations. Eur Biophys J. 2002 Feb 19;31(3):217–227. doi: 10.1007/s00249-002-0207-5. [DOI] [PubMed] [Google Scholar]
  17. Fernández C., Hilty C., Bonjour S., Adeishvili K., Pervushin K., Wüthrich K. Solution NMR studies of the integral membrane proteins OmpX and OmpA from Escherichia coli. FEBS Lett. 2001 Aug 31;504(3):173–178. doi: 10.1016/s0014-5793(01)02742-9. [DOI] [PubMed] [Google Scholar]
  18. Forrest L. R., Sansom M. S. Membrane simulations: bigger and better? Curr Opin Struct Biol. 2000 Apr;10(2):174–181. doi: 10.1016/s0959-440x(00)00066-x. [DOI] [PubMed] [Google Scholar]
  19. Freulet-Marrière M. A., El Hamel C., Chevalier S., Dé E., Molle G., Orange N. Evidence for association of lipopolysaccharide with Pseudomonas fluorescens strain MF0 porin OprF. Res Microbiol. 2000 Dec;151(10):873–876. doi: 10.1016/s0923-2508(00)01154-2. [DOI] [PubMed] [Google Scholar]
  20. Fyfe P. K., McAuley K. E., Roszak A. W., Isaacs N. W., Cogdell R. J., Jones M. R. Probing the interface between membrane proteins and membrane lipids by X-ray crystallography. Trends Biochem Sci. 2001 Feb;26(2):106–112. doi: 10.1016/s0968-0004(00)01746-1. [DOI] [PubMed] [Google Scholar]
  21. Guidoni L., Torre V., Carloni P. Water and potassium dynamics inside the KcsA K(+) channel. FEBS Lett. 2000 Jul 14;477(1-2):37–42. doi: 10.1016/s0014-5793(00)01712-9. [DOI] [PubMed] [Google Scholar]
  22. Gullingsrud J., Kosztin D., Schulten K. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J. 2001 May;80(5):2074–2081. doi: 10.1016/S0006-3495(01)76181-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  24. Hünenberger P. H., Mark A. E., van Gunsteren W. F. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. J Mol Biol. 1995 Sep 29;252(4):492–503. doi: 10.1006/jmbi.1995.0514. [DOI] [PubMed] [Google Scholar]
  25. Jensen M. O., Tajkhorshid E., Schulten K. The mechanism of glycerol conduction in aquaglyceroporins. Structure. 2001 Nov;9(11):1083–1093. doi: 10.1016/s0969-2126(01)00668-2. [DOI] [PubMed] [Google Scholar]
  26. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  27. Koebnik R., Locher K. P., Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000 Jul;37(2):239–253. doi: 10.1046/j.1365-2958.2000.01983.x. [DOI] [PubMed] [Google Scholar]
  28. Koebnik R. Proposal for a peptidoglycan-associating alpha-helical motif in the C-terminal regions of some bacterial cell-surface proteins. Mol Microbiol. 1995 Jun;16(6):1269–1270. doi: 10.1111/j.1365-2958.1995.tb02348.x. [DOI] [PubMed] [Google Scholar]
  29. Lins R. D., Straatsma T. P. Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. Biophys J. 2001 Aug;81(2):1037–1046. doi: 10.1016/S0006-3495(01)75761-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. doi: 10.1136/ard.60.2.105. [DOI] [PMC free article] [Google Scholar]
  31. Pautsch A., Schulz G. E. High-resolution structure of the OmpA membrane domain. J Mol Biol. 2000 Apr 28;298(2):273–282. doi: 10.1006/jmbi.2000.3671. [DOI] [PubMed] [Google Scholar]
  32. Pautsch A., Schulz G. E. Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol. 1998 Nov;5(11):1013–1017. doi: 10.1038/2983. [DOI] [PubMed] [Google Scholar]
  33. Petrache H. I., Grossfield A., MacKenzie K. R., Engelman D. M., Woolf T. B. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations. J Mol Biol. 2000 Sep 22;302(3):727–746. doi: 10.1006/jmbi.2000.4072. [DOI] [PubMed] [Google Scholar]
  34. Roux B., Bernèche S., Im W. Ion channels, permeation, and electrostatics: insight into the function of KcsA. Biochemistry. 2000 Nov 7;39(44):13295–13306. doi: 10.1021/bi001567v. [DOI] [PubMed] [Google Scholar]
  35. Saint N., De E., Julien S., Orange N., Molle G. Ionophore properties of OmpA of Escherichia coli. Biochim Biophys Acta. 1993 Jan 18;1145(1):119–123. doi: 10.1016/0005-2736(93)90388-g. [DOI] [PubMed] [Google Scholar]
  36. Saint N., El Hamel C., Dé E., Molle G. Ion channel formation by N-terminal domain: a common feature of OprFs of Pseudomonas and OmpA of Escherichia coli. FEMS Microbiol Lett. 2000 Sep 15;190(2):261–265. doi: 10.1111/j.1574-6968.2000.tb09296.x. [DOI] [PubMed] [Google Scholar]
  37. Sansom M. S., Shrivastava I. H., Ranatunga K. M., Smith G. R. Simulations of ion channels--watching ions and water move. Trends Biochem Sci. 2000 Aug;25(8):368–374. doi: 10.1016/s0968-0004(00)01613-3. [DOI] [PubMed] [Google Scholar]
  38. Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smart O. S., Breed J., Smith G. R., Sansom M. S. A novel method for structure-based prediction of ion channel conductance properties. Biophys J. 1997 Mar;72(3):1109–1126. doi: 10.1016/S0006-3495(97)78760-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smart O. S., Coates G. M., Sansom M. S., Alder G. M., Bashford C. L. Structure-based prediction of the conductance properties of ion channels. Faraday Discuss. 1998;(111):185–246. doi: 10.1039/a806771f. [DOI] [PubMed] [Google Scholar]
  41. Smart O. S., Goodfellow J. M., Wallace B. A. The pore dimensions of gramicidin A. Biophys J. 1993 Dec;65(6):2455–2460. doi: 10.1016/S0006-3495(93)81293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Smart O. S., Neduvelil J. G., Wang X., Wallace B. A., Sansom M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph. 1996 Dec;14(6):354-60, 376. doi: 10.1016/s0263-7855(97)00009-x. [DOI] [PubMed] [Google Scholar]
  43. Smith G. R., Sansom M. S. Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study. Biophys J. 1998 Dec;75(6):2767–2782. doi: 10.1016/S0006-3495(98)77720-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smith G. R., Sansom M. S. Effective diffusion coefficients of K+ and Cl- ions in ion channel models. Biophys Chem. 1999 Jun 7;79(2):129–151. doi: 10.1016/s0301-4622(99)00052-6. [DOI] [PubMed] [Google Scholar]
  45. Sugawara E., Nikaido H. OmpA protein of Escherichia coli outer membrane occurs in open and closed channel forms. J Biol Chem. 1994 Jul 8;269(27):17981–17987. [PubMed] [Google Scholar]
  46. Sugawara E., Nikaido H. Pore-forming activity of OmpA protein of Escherichia coli. J Biol Chem. 1992 Feb 5;267(4):2507–2511. [PubMed] [Google Scholar]
  47. Tamm L. K., Arora A., Kleinschmidt J. H. Structure and assembly of beta-barrel membrane proteins. J Biol Chem. 2001 Jun 29;276(35):32399–32402. doi: 10.1074/jbc.R100021200. [DOI] [PubMed] [Google Scholar]
  48. Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tieleman D. P., Forrest L. R., Sansom M. S., Berendsen H. J. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. Biochemistry. 1998 Dec 15;37(50):17554–17561. doi: 10.1021/bi981802y. [DOI] [PubMed] [Google Scholar]
  50. Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  51. Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998 Apr;7(4):1029–1038. doi: 10.1002/pro.5560070420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhu F., Tajkhorshid E., Schulten K. Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer. FEBS Lett. 2001 Aug 31;504(3):212–218. doi: 10.1016/s0014-5793(01)02749-1. [DOI] [PubMed] [Google Scholar]
  53. de Groot B. L., Grubmüller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science. 2001 Dec 14;294(5550):2353–2357. doi: 10.1126/science.1066115. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES