Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):776–793. doi: 10.1016/S0006-3495(02)75208-9

Reaction diffusion model of the enzymatic erosion of insoluble fibrillar matrices.

Abraham R Tzafriri 1, Michel Bercovier 1, Hanna Parnas 1
PMCID: PMC1302186  PMID: 12124264

Abstract

Predicting the time course of in vivo biodegradation is a key issue in the design of an increasing number of biomedical applications such as sutures, tissue analogs and drug-delivery devices. The design of such biodegradable devices is hampered by the absence of quantitative models for the enzymatic erosion of solid protein matrices. In this work, we derive and simulate a reaction diffusion model for the enzymatic erosion of fibrillar gels that successfully reproduces the main qualitative features of this process. A key aspect of the proposed model is the incorporation of steric hindrance into the standard Michaelis-Menten scheme for enzyme kinetics. In the limit of instantaneous diffusion, the model equations are analogous to the standard equations for enzymatic degradation in solution. Invoking this analogy, the total quasi-steady-state approximation is used to derive approximate analytical solutions that are valid for a wide range of in vitro conditions. Using these analytical approximations, an experimental-theoretical method is derived to unambiguously estimate all the kinetic model parameters. Moreover, the analytical approximations correctly describe the characteristic hyperbolic dependence of the erosion rate on enzyme concentration and the zero-order erosion of thin fibers. For definiteness, the analysis of published experimental results of enzymatic degradation of fibrillar collagen is demonstrated, and the role of diffusion in these experiments is elucidated.

Full Text

The Full Text of this article is available as a PDF (252.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharon S., Bercovier M., Parnas H. Parallel computation enables precise description of Ca2+ distribution in nerve terminals. Bull Math Biol. 1996 Nov;58(6):1075–1097. doi: 10.1007/BF02458384. [DOI] [PubMed] [Google Scholar]
  2. Bleeg H. S. Collagenolytic enzymes assayed by spectrophotometry with suspensions of reconstituted collagen fibrils. Connect Tissue Res. 1991;26(4):247–257. doi: 10.3109/03008209109152442. [DOI] [PubMed] [Google Scholar]
  3. Borghans J. A., de Boer R. J., Segel L. A. Extending the quasi-steady state approximation by changing variables. Bull Math Biol. 1996 Jan;58(1):43–63. doi: 10.1007/BF02458281. [DOI] [PubMed] [Google Scholar]
  4. Brilla C. G., Funck R. C., Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000 Sep 19;102(12):1388–1393. doi: 10.1161/01.cir.102.12.1388. [DOI] [PubMed] [Google Scholar]
  5. Compton C. C., Butler C. E., Yannas I. V., Warland G., Orgill D. P. Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J Invest Dermatol. 1998 Jun;110(6):908–916. doi: 10.1046/j.1523-1747.1998.00200.x. [DOI] [PubMed] [Google Scholar]
  6. French M. F., Bhown A., Van Wart H. E. Identification of Clostridium histolyticum collagenase hyperreactive sites in type I, II, and III collagens: lack of correlation with local triple helical stability. J Protein Chem. 1992 Feb;11(1):83–97. doi: 10.1007/BF01025095. [DOI] [PubMed] [Google Scholar]
  7. Friess W. Collagen--biomaterial for drug delivery. Eur J Pharm Biopharm. 1998 Mar;45(2):113–136. doi: 10.1016/s0939-6411(98)00017-4. [DOI] [PubMed] [Google Scholar]
  8. Friess W., Lee G., Groves M. J. Insoluble collagen matrices for prolonged delivery of proteins. Pharm Dev Technol. 1996 Jul;1(2):185–193. doi: 10.3109/10837459609029893. [DOI] [PubMed] [Google Scholar]
  9. Gilbert D. L., Kim S. W. Macromolecular release from collagen monolithic devices. J Biomed Mater Res. 1990 Sep;24(9):1221–1239. doi: 10.1002/jbm.820240907. [DOI] [PubMed] [Google Scholar]
  10. Goudar C. T., Sonnad J. R., Duggleby R. G. Parameter estimation using a direct solution of the integrated Michaelis-Menten equation. Biochim Biophys Acta. 1999 Jan 11;1429(2):377–383. doi: 10.1016/s0167-4838(98)00247-7. [DOI] [PubMed] [Google Scholar]
  11. Hasty K. A., Jeffrey J. J., Hibbs M. S., Welgus H. G. The collagen substrate specificity of human neutrophil collagenase. J Biol Chem. 1987 Jul 25;262(21):10048–10052. [PubMed] [Google Scholar]
  12. Hayashi T., Ikada Y. Enzymatic hydrolysis of copoly-(N-hydroxyalkyl L-glutamine/gamma-methyl L-glutamate) fibres. Biomaterials. 1990 Aug;11(6):409–413. doi: 10.1016/0142-9612(90)90096-9. [DOI] [PubMed] [Google Scholar]
  13. Hulmes D. J., Wess T. J., Prockop D. J., Fratzl P. Radial packing, order, and disorder in collagen fibrils. Biophys J. 1995 May;68(5):1661–1670. doi: 10.1016/S0006-3495(95)80391-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kadler K. E., Holmes D. F., Trotter J. A., Chapman J. A. Collagen fibril formation. Biochem J. 1996 May 15;316(Pt 1):1–11. doi: 10.1042/bj3160001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lewis G., Shaw K. M. Modeling the tensile behavior of human Achilles tendon. Biomed Mater Eng. 1997;7(4):231–244. [PubMed] [Google Scholar]
  16. Lin H., Clegg D. O., Lal R. Imaging real-time proteolysis of single collagen I molecules with an atomic force microscope. Biochemistry. 1999 Aug 3;38(31):9956–9963. doi: 10.1021/bi990800q. [DOI] [PubMed] [Google Scholar]
  17. Långsjö T. K., Hyttinen M., Pelttari A., Kiraly K., Arokoski J., Helminen H. J. Electron microscopic stereological study of collagen fibrils in bovine articular cartilage: volume and surface densities are best obtained indirectly (from length densities and diameters) using isotropic uniform random sampling. J Anat. 1999 Aug;195(Pt 2):281–293. doi: 10.1046/j.1469-7580.1999.19520281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mallya S. K., Mookhtiar K. A., Van Wart H. E. Kinetics of hydrolysis of type I, II, and III collagens by the class I and II Clostridium histolyticum collagenases. J Protein Chem. 1992 Feb;11(1):99–107. doi: 10.1007/BF01025096. [DOI] [PubMed] [Google Scholar]
  19. Matsushita O., Jung C. M., Minami J., Katayama S., Nishi N., Okabe A. A study of the collagen-binding domain of a 116-kDa Clostridium histolyticum collagenase. J Biol Chem. 1998 Feb 6;273(6):3643–3648. doi: 10.1074/jbc.273.6.3643. [DOI] [PubMed] [Google Scholar]
  20. Matsushita O., Koide T., Kobayashi R., Nagata K., Okabe A. Substrate recognition by the collagen-binding domain of Clostridium histolyticum class I collagenase. J Biol Chem. 2000 Dec 19;276(12):8761–8770. doi: 10.1074/jbc.M003450200. [DOI] [PubMed] [Google Scholar]
  21. Okada T., Hayashi T., Ikada Y. Degradation of collagen suture in vitro and in vivo. Biomaterials. 1992;13(7):448–454. doi: 10.1016/0142-9612(92)90165-k. [DOI] [PubMed] [Google Scholar]
  22. Omura T. H., Noguchi A., Johanns C. A., Jeffrey J. J., Partridge N. C. Identification of a specific receptor for interstitial collagenase on osteoblastic cells. J Biol Chem. 1994 Oct 7;269(40):24994–24998. [PubMed] [Google Scholar]
  23. Rahmouni M., Chouinard F., Nekka F., Lenaerts V., Leroux J. C. Enzymatic degradation of cross-linked high amylose starch tablets and its effect on in vitro release of sodium diclofenac. Eur J Pharm Biopharm. 2001 May;51(3):191–198. doi: 10.1016/s0939-6411(01)00127-8. [DOI] [PubMed] [Google Scholar]
  24. Riesle J., Hollander A. P., Langer R., Freed L. E., Vunjak-Novakovic G. Collagen in tissue-engineered cartilage: types, structure, and crosslinks. J Cell Biochem. 1998 Dec 1;71(3):313–327. doi: 10.1002/(sici)1097-4644(19981201)71:3<313::aid-jcb1>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  25. Sakai T., Gross J. Some properties of the products of reaction of tadpole collagenase with collagen. Biochemistry. 1967 Feb;6(2):518–528. doi: 10.1021/bi00854a021. [DOI] [PubMed] [Google Scholar]
  26. Saltzman W. M., Radomsky M. L., Whaley K. J., Cone R. A. Antibody diffusion in human cervical mucus. Biophys J. 1994 Feb;66(2 Pt 1):508–515. doi: 10.1016/s0006-3495(94)80802-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sano A, Hojo T, Maeda M, Fujioka K. Protein release from collagen matrices. Adv Drug Deliv Rev. 1998 May 4;31(3):247–266. doi: 10.1016/s0169-409x(97)00119-1. [DOI] [PubMed] [Google Scholar]
  28. Schnell S., Maini P. K. Enzyme kinetics at high enzyme concentration. Bull Math Biol. 2000 May;62(3):483–499. doi: 10.1006/bulm.1999.0163. [DOI] [PubMed] [Google Scholar]
  29. Schuck P. Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport. Biophys J. 1996 Mar;70(3):1230–1249. doi: 10.1016/S0006-3495(96)79681-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Segel L. A. On the validity of the steady state assumption of enzyme kinetics. Bull Math Biol. 1988;50(6):579–593. doi: 10.1007/BF02460092. [DOI] [PubMed] [Google Scholar]
  31. Steven F. S. Observations on the different substrate behavior of tropocollagen molecules in solution and intermolecularly cross-linked tropocollagen within insoluble polymeric collagen fibrils. Biochem J. 1976 May 1;155(2):391–400. doi: 10.1042/bj1550391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steven F. S. Polymeric collagen fibrils. An example of substrate-mediated steric obstruction of enzymic digestion. Biochim Biophys Acta. 1976 Nov 8;452(1):151–160. doi: 10.1016/0005-2744(76)90066-8. [DOI] [PubMed] [Google Scholar]
  33. Sung H. W., Chang Y., Chiu C. T., Chen C. N., Liang H. C. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J Biomed Mater Res. 1999 Nov;47(2):116–126. doi: 10.1002/(sici)1097-4636(199911)47:2<116::aid-jbm2>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  34. Sung H. W., Hsu C. S., Wang S. P., Hsu H. L. Degradation potential of biological tissues fixed with various fixatives: an in vitro study. J Biomed Mater Res. 1997 May;35(2):147–155. doi: 10.1002/(sici)1097-4636(199705)35:2<147::aid-jbm2>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  35. TSUK A. G., OSTER G. Determination of enzyme activity by a linear measurement. Nature. 1961 May 20;190:721–722. doi: 10.1038/190721a0. [DOI] [PubMed] [Google Scholar]
  36. Tzafriri A. R. Mathematical modeling of diffusion-mediated release from bulk degrading matrices. J Control Release. 2000 Jan 3;63(1-2):69–79. doi: 10.1016/s0168-3659(99)00174-1. [DOI] [PubMed] [Google Scholar]
  37. Van Wart H. E., Steinbrink D. R. Complementary substrate specificities of class I and class II collagenases from Clostridium histolyticum. Biochemistry. 1985 Nov 5;24(23):6520–6526. doi: 10.1021/bi00344a032. [DOI] [PubMed] [Google Scholar]
  38. Weadock K. S., Wolff D., Silver F. H. Diffusivity of 125I-labelled macromolecules through collagen: mechanism of diffusion and effect of adsorption. Biomaterials. 1987 Mar;8(2):105–112. doi: 10.1016/0142-9612(87)90098-6. [DOI] [PubMed] [Google Scholar]
  39. Welgus H. G., Jeffrey J. J., Eisen A. Z. Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J Biol Chem. 1981 Sep 25;256(18):9516–9521. [PubMed] [Google Scholar]
  40. Welgus H. G., Jeffrey J. J., Eisen A. Z., Roswit W. T., Stricklin G. P. Human skin fibroblast collagenase: interaction with substrate and inhibitor. Coll Relat Res. 1985 Mar;5(2):167–179. doi: 10.1016/s0174-173x(85)80038-8. [DOI] [PubMed] [Google Scholar]
  41. Welgus H. G., Jeffrey J. J., Eisen A. Z. The collagen substrate specificity of human skin fibroblast collagenase. J Biol Chem. 1981 Sep 25;256(18):9511–9515. [PubMed] [Google Scholar]
  42. Welgus H. G., Jeffrey J. J., Stricklin G. P., Eisen A. Z. The gelatinolytic activity of human skin fibroblast collagenase. J Biol Chem. 1982 Oct 10;257(19):11534–11539. [PubMed] [Google Scholar]
  43. Welgus H. G., Jeffrey J. J., Stricklin G. P., Roswit W. T., Eisen A. Z. Characteristics of the action of human skin fibroblast collagenase on fibrillar collagen. J Biol Chem. 1980 Jul 25;255(14):6806–6813. [PubMed] [Google Scholar]
  44. Wissink M. J., Beernink R., Poot A. A., Engbers G. H., Beugeling T., van Aken W. G., Feijen J. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release. 2000 Feb 14;64(1-3):103–114. doi: 10.1016/s0168-3659(99)00145-5. [DOI] [PubMed] [Google Scholar]
  45. Wu H., Byrne M. H., Stacey A., Goldring M. B., Birkhead J. R., Jaenisch R., Krane S. M. Generation of collagenase-resistant collagen by site-directed mutagenesis of murine pro alpha 1(I) collagen gene. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5888–5892. doi: 10.1073/pnas.87.15.5888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhu Y. K., Umino T., Liu X. D., Wang H. J., Romberger D. J., Spurzem J. R., Rennard S. I. Contraction of fibroblast-containing collagen gels: initial collagen concentration regulates the degree of contraction and cell survival. In Vitro Cell Dev Biol Anim. 2001 Jan;37(1):10–16. doi: 10.1290/1071-2690(2001)037<0010:COFCCG>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  47. van Wachem P. B., Plantinga J. A., Wissink M. J., Beernink R., Poot A. A., Engbers G. H., Beugeling T., van Aken W. G., Feijen J., van Luyn M. J. In vivo biocompatibility of carbodiimide-crosslinked collagen matrices: Effects of crosslink density, heparin immobilization, and bFGF loading. J Biomed Mater Res. 2001 Jun 5;55(3):368–378. doi: 10.1002/1097-4636(20010605)55:3<368::aid-jbm1025>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES